
qThis paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Editor M. Morari.
Research supported by National Science Foundation under grant
ECS-93-12922 and CTS-9708497.

*Corresponding author. Tel.: #44-171-594-6246; fax: #44-171-
594-6282.

E-mail address: d.mayne@ic.ac.uk (D. Q. Mayne)

Automatica 36 (2000) 789}814

Survey Paper

Constrained model predictive control: Stability and optimalityq

D. Q. Mayne!,*, J. B. Rawlings", C. V. Rao", P. O. M. Scokaert#
!Department of Electrical and Electronic Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BT, UK

"Department of Chemical Engineering, University of Wisconsin, Madison, USA
#Centre National d 'Etudes des Telecommunications, France Telecom, France

Received 29 May 1998; revised 6 September 1999; received in "nal form 8 November 1999

Abstract

Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant,
a "nite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an
optimal control sequence and the "rst control in this sequence is applied to the plant. An important advantage of this type of control is
its ability to cope with hard constraints on controls and states. It has, therefore, been widely applied in petro-chemical and related
industries where satisfaction of constraints is particularly important because e$ciency demands operating points on or close to the
boundary of the set of admissible states and controls. In this review, we focus on model predictive control of constrained systems, both
linear and nonlinear and discuss only brie#y model predictive control of unconstrained nonlinear and/or time-varying systems. We
concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to
a stage where it has achieved su$cient maturity to warrant the active interest of researchers in nonlinear control. We distill from an
extensive literature essential principles that ensure stability and use these to present a concise characterization of most of the model
predictive controllers that have been proposed in the literature. In some cases the "nite horizon optimal control problem solved
on-line is exactly equivalent to the same problem with an in"nite horizon; in other cases it is equivalent to a modi"ed in"nite horizon
optimal control problem. In both situations, known advantages of in"nite horizon optimal control accrue. ( 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

1.1. What is model predictive control?

Model predictive control (MPC) or receding horizon
control (RHC) is a form of control in which the current
control action is obtained by solving on-line, at each
sampling instant, a "nite horizon open-loop optimal con-
trol problem, using the current state of the plant as the
initial state; the optimization yields an optimal control
sequence and the "rst control in this sequence is applied

to the plant. This is its main di!erence from conventional
control which uses a pre-computed control law. With the
clarity gained by hindsight, it can be recognized that the
raison d+e( tre for model predictive control is its ability to
handle control problems where o!-line computation of
a control law is di$cult or impossible although other
features, such as its capability for controlling multivari-
able plants, were initially deemed more important. Near-
ly every application imposes constraints; actuators are
naturally limited in the force (or equivalent) they can
apply, safety limits states such as temperature, pressure
and velocity and e$ciency often dictates steady-state
operation close to the boundary of the set of permissible
states. The prevalence of hard constraints is accompanied
by a dearth of control methods for handling them, des-
pite a continuous demand from industry that has had, in
their absence, to resort often to ad hoc methods. Model
predictive control is one of few suitable methods, and this
fact makes it an important tool for the control engineer,
particularly in the process industries where plants being

0005-1098/00/$ - see front matter ( 2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 0 5 - 1 0 9 8 ( 9 9 ) 0 0 2 1 4 - 9



controlled are su$ciently &slow' to permit its implemen-
tation. Other examples where model predictive control
may be advantageously employed include unconstrained
nonlinear plants, for which o!-line computation of a con-
trol law usually requires the plant dynamics to possess
a special structure, and time-varying plants.

MPC is not a new method of control design. It essen-
tially solves standard optimal control problems (except
that, in MPC, the optimal control problem is required to
have a "nite horizon in contrast to the in"nite horizon
usually employed in H

2
and H

=
linear optimal control).

Where it di!ers from other controllers is that it solves the
optimal control problem on-line for the current state of
the plant, rather than determining ow-line a feedback
policy (that provides the optimal control for all states).
The on-line solution is obtained by solving an open-
loop optimal control problem in which the initial state
is the current state of the system being controlled; this
is a mathematical programming problem. Determining
the feedback solution, on the other hand, requires
solution of the Hamilton}Jacobi}Bellman (Dynamic
Programming) di!erential or di!erence equation, a vastly
more di$cult task (except in those cases, such as H

2
and H

=
linear optimal control, where the value function

can be "nitely parameterized). From this point of view,
MPC di!ers from other control methods merely in its
implementation. The requirement that the open-loop op-
timal control problem be solvable in a reasonable time
(compared with plant dynamics) necessitates, however,
the use of a "nite horizon and this raises interesting
problems.

1.2. The open-loop optimal control problem

The system to be controlled is usually described, or
approximated, by an ordinary di!erential equation but,
since the control is normally piecewise constant, is usu-
ally modelled, in the MPC literature, by a di!erence
equation

x(k#1)"f (x(k), u(k)), (1.1)

y(k)"h(x(k)), (1.2)

where f ( ) ) is implicitly de"ned by the originating di!er-
ential equation that has an equilibrium point at the
origin ( f (0, 0)"0). In the sequel, we often use x` to
denote the successor state f (x, u) and write (1.1) and (1.2)
in the abbreviated form x`"f (x, u), y"h(x). We em-
ploy u( ) ) or u to denote a control sequence and xu( ) ; (x, j))
to denote the state trajectory (sequence) resulting from an
initial state x at time j and a control sequence u. The
control and state sequences must satisfy

u(k)3U, (1.3)

x(k)3X, (1.4)

where, usually, U is a convex, compact subset of Rm and
X a convex, closed subset of Rn, each set containing the
origin in its interior. The control objective is usually to
steer the state to the origin or to an equilibrium state
x
r

for which the output y
r
"h(x

r
)"r where r is the

constant reference. A suitable change of coordinates re-
duces the second problem to the "rst which, therefore, we
consider in the sequel. For event (x, k) (i.e. for state x at
time k), the cost is de"ned by

<(x, k, u)"
k`N~1

+
i/k

l(x(i), u(i))#F(x(k#N)), (1.5)

where u"Mu(k), u(k#1),2, u(k#N!1)N and x(i) :"
xu(i; (x, k)). We assume the stage cost l(x, u)5c(D(x, u)D)2 to
avoid technicalities (this assumption may be replaced by
l(x, u)5c(D(z, u)D)2 where z"h(x) and ( f, h) is detectable)
and that l(0, 0)"0. The terminal time k#N increases
with time k and is often referred to as a receding horizon.
A terminal constraint

x(k#N)3X
f
LX (1.6)

is sometimes imposed. At event (x, k), the optimal control
problem P(x, k) of minimizing <(x, k, u) subject to the
control, state and terminal constraints is solved, yielding
the optimizing control sequence

u0(x, k)"Mu0(k; (x, k)), u0(k#1; (x, k)),2,

u0(k#N!1;(x, k))N (1.7)

and the value function

<0(x, k)"<(x, k, u0(x, k)) (1.8)

(the argument (x, k) denotes the initial state is x at
time k). The "rst control u0(k; (x, k)) in the optimal se-
quence u0(x, k) is applied to the system (at time k). This
de"nes an implicit model predictive control law
i(x,k) :"u0(k; (x, k)).

Since f ( ) ) and l( ) ) are time invariant, the problems
P(x, k) are time invariant in the sense that <0(x, k)"
<0(x, 0) and i(x, k)"i(x, 0) for all k, so that it su$ces, at
each event (x, k) to solve P

N
(x) :"P(x, 0), i.e. to regard

current time as zero. Problem P
N
(x) (su$x N is used to

remind us that the optimization is over a "nite horizon
N) is therefore de"ned by

P
N
(x): <0

N
(x)"min

u

M<
N
(x, u) D u3U

N
(x)N, (1.9)

where, now,

<
N
(x, u) :"

N~1
+
i/0

l(x(i), u(i))#F(x(N)) (1.10)

u"Mu(0), u(1),2, u(N!1)N, x(i)"xu(i; (x, 0)) and U
N
(x)

is the set of (feasible) control sequences satisfying the
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control, state and terminal constraints. Because N is
"nite, the minimum exists if f ( ) ), l( ) ) and F( ) ) are con-
tinuous, U compact, and X and X

f
closed. At event (x, k),

the problem P
N
(x) is solved yielding the optimizing con-

trol sequence

u0(x)"Mu0(0;x), u0(1; x),2, u0(N!1; x)N (1.11)

the optimal state trajectory

x0(x)"Mx0(0; x),x0(1;x),2, x0(N; x)N (1.12)

and the value function

<0
N
(x)"<

N
(x, u0(x)) (1.13)

(the single argument x denotes the initial state is x at time
0, so x0(0; x)"x). The "rst control u0(0;x) in the optimiz-
ing sequence u0(x) is applied to the plant. The implicit
model predictive control law is, therefore,

i
N
(x) :"u0(0;x) (1.14)

and is time invariant. Dynamic Programming could, in
principle, be used to determine a sequence M<

j
( ) )N of

value functions and a sequence of control laws Mi
j
( ) )N

where j is time-to-go. Because the optimal control prob-
lem is deterministic, the value function <0

N
( ) ) and its

associated control law i
N
( ) ) obtained via dynamic pro-

gramming are identical to the value function and control
law in (1.13) and (1.14). It would be preferable to pre-
compute i

N
( ) ) using dynamic programming. Since this

is usually impossible, MPC computes at event (x, k) the
optimal control action i

N
(x) rather than pre-computing

the control law i
N
( ) ); the di!erence between using dy-

namic programming and MPC is, therefore, purely one
of implementation. The theoretical properties of MPC
derive from the fact that a receding horizon control law
i
N
( ) ) is employed rather than, as is conventional, an

in"nite horizon control law.
In the sequel we "nd it convenient to refer to the

in"nite horizon value function <0
=

( ) ) and the associated
in"nite horizon control law i

=
( ) ) for the problem P

=
(x)

de"ned as in (1.9)}(1.11) with N replaced by R (under
the assumption that the minimum in (1.9) exists).

1.3. Purpose of this review

The discussion immediately above emphasizes the fact
that the essential theoretical issues in model predictive
control arise from the employment of a receding horizon
control law. Stability is an overriding requirement and
much of the literature (Section 2) has been devoted to
"nding su$cient conditions for stability, resulting in
a plethora of proposals for model predictive control. Our
"rst, and major, objective (Section 3) is to distill from this
large literature the essential &ingredients' required for

stability enabling us to summarize succinctly the major
formulations of MPC. In this task, we follow two impor-
tant streams in the literature, the "rst a direct approach
that employs the value function<0

N
( ) ) (for a "xed horizon

N) as a Lyapunov function, and the second an approach
that employs a monotonicity property of a sequence
M<0

j
( ) )N of value functions. The theory of stability of

model predictive control has reached a relatively mature
stage; one purpose of this review is to encourage re-
searchers in nonlinear control to contribute to this area.

Our next concern (Section 4) is robustness, because
most other topics, such as output feedback, disturbance
attenuation, tracking and adaptation, involve uncertain-
ty. Here progress is limited for several reasons that we
discuss. Our main objective is to summarize progress and
delineate unresolved di$culties.

We proceed (Section 5) with a brief discussion of vari-
ous issues, such as tracking, output feedback, and adap-
tive model predictive control where research has not
matured to the same stage as that reached in the study of
stability and close our review (Section 6) with some
suggestions for future research.

The focus of this review is model predictive control of
constrained dynamic systems, both linear and nonlinear,
since it is the ability of MPC to handle constraints that
makes it so attractive to industry; we also give limited
attention to the use of model predictive control for prob-
lems, such as the control of unconstrained nonlinear
systems and time-varying systems, that are otherwise
di$cult to solve. We do not review, except in passing, the
extensive literature on predictive control of uncon-
strained linear systems, accepting the argument by Bit-
mead, Gevers and Wertz (1990) that this problem is well
handled by linear, quadratic, Gaussian control. We also
do not review literature that does not employ state mod-
els; this includes signi"cant parts of the process control
literature where impulse and step response models are
employed and much of the literature on generalized pre-
dictive control where transfer function models are em-
ployed. Our reason is simple; even if the system being
controlled is linear, the presence of constraints makes the
controller nonlinear so that the natural tool for establish-
ing stability is Lyapunov theory. Nor do we review
applications; an excellent review of these appears in Qin
and Badgwell (1997).

MPC literature is somewhat unusual in that, for
a while, there were several relatively independent
streams: that dealing with theoretical foundations, the
&process control literature' that is largely responsible for
MPC's wide-scale adoption by industry, and the litera-
ture on generalized predictive control that has its roots in
minimum variance and adaptive control. To provide
some appreciation, rather than an exhaustive review, of
this literature we brie#y discuss some aspects of it under
these headings in the following section, and follow this
with an enumeration of some recent contributions to

D.Q. Mayne et al. / Automatica 36 (2000) 789}814 791



model predictive control of constrained systems; these
form a basis for our subsequent review.

Because our review is sharply focussed, we mention
review papers and books that give a wider background.
Earlier reviews include Richalet, Rault, Testud and
Papon (1978), GarcmHa, Prett and Morari (1989), Rawlings,
Meadows and Muske (1994), Mayne (1995, 1997), Lee
and Cooley (1997), Qin and Badgwell (1997), Chen and
AllgoK wer (1998a) and Morari and Lee (1999). The review
by GarcmHa et al. (1989) has been particularly in#uential.
Also useful are proceedings of conferences dealing with
model predictive control: Clarke (1994), Kantor, GarcmHa
and Carnahan (1997), and AllgoK wer and Zheng (1999).
The book by Bitmead et al. (1990) gives an excellent,
critical exposition of generalized predictive control of
linear, unconstrained systems and presents a useful
monotonicity argument for establishing stability. Soeter-
boek (1992) gives a comprehensive exposition of general-
ized predictive control and its relationship with model
predictive control. Mosca (1994) devotes a chapter to
predictive control of linear unconstrained systems.
Camacho and Bordons (1998), aimed mainly at practi-
tioners, focuses on implementation issues for predictive
control.

2. Historical notes

2.1. Theoretical foundations

Obviously relevant to the development of MPC is the
literature dealing with the existence of solutions to opti-
mal control problems, characterization of optimal solu-
tions (necessary and su$cient conditions of optimality),
Lyapunov stability of the optimally controlled system,
and algorithms for the computation of optimal feedback
controllers (where possible) and optimal open-loop con-
trols. These topics are dealt with by, for example, Lee and
Markus (1967) and Fleming and Rishel (1975).

There are several seminal ideas in the optimal control
literature that underly MPC. The "rst links two major
themes in the control revolution of the 1960s: Hamil-
ton}Jacobi}Bellman theory (Dynamic Programming),
which provides su$cient conditions for optimality and
a constructive procedure for determining an optimal
feedback controller u"i(x), and the maximum principle,
which provides necessary conditions of optimality and
motivates computational algorithms for the determina-
tion of the optimal open-loop control u0( ) ;x) for a given
initial state x. The link is

i(x)"u0(0; x)

for all x, so that optimal feedback control may be ob-
tained by solving an open-loop control problem (for each
state x), an obvious fact appreciated at the very com-
mencement of optimal control; it is implicit, for example,

in the principle of optimality (Bellman, 1957) and Lee and
Markus (1967, p. 423), speci"cally state: `One technique
for obtaining a feedback controller synthesis from knowl-
edge of open-loop controllers is to measure the current
control process state and then compute very rapidly for
the open-loop control function. The "rst portion of this
function is then used during a short time interval, after
which a new measurement of the process state is made
and a new open-loop control function is computed for
this new measurement. The procedure is then repeated.a
This result follows from the deterministic nature of the
optimal control problem (feedback is only necessary
when uncertainty is present).

A second observation (Kalman, 1960) is that optimality
does not imply stability, but that, under certain conditions
(stabilizability and detectability), inxnite horizon optimal
controllers are stabilizing, an appropriate Lyapunov
function for establishing stability being the value func-
tion associated with the in"nite horizon optimal control
problem.

Solving in"nite horizon, open-loop, optimal control
problems is not usually practical, especially on-line
(apart, of course, from standard H

2
and H

=
control of

linear systems), so a relevant concern is the formulation
of receding horizon open-loop optimal control problems
whose solutions provide stabilizing control. Early exam-
ples of results in this direction were Kleinman (1970) and
Thomas (1975). Kleinman implicitly considers minimum
energy control (of a linear system) to the origin in "nite
time ¹, and shows the optimal controller is linear, time
invariant (u"Kx where K is easily determined from the
controllability Grammian over the interval ¹). He shows
the controller u"Kx is stabilizing using as a Lyapunov
function <(x)"xTPx where P is the inverse of the con-
trollability Grammian over the interval [0,¹]. Thomas
obtains the same result by considering a linear quadratic
control problem with control cost, no state cost, and an
in"nite terminal cost that implicitly adds the stability
constraint x(¹)"0 to the optimal control problem. This
is achieved by using M :"P~1 in place of the Riccati
variable P and solving a Riccati-like di!erential equation
for M with terminal condition M(¹)"0; this choice
implicitly constrains the terminal state to be the origin.
Stability is a direct result of incorporating the stability
constraint x(¹)"0 in the optimal control problem. The
object of these studies was not to advocate MPC (i.e.
on-line solution of the open-loop optimal control prob-
lem) but rather to provide alternative methods (alterna-
tive to in"nite horizon linear-quadratic control) for
obtaining linear, time-invariant, stabilizing control.
There is no need for on-line optimization since the feed-
back problem is easily solved. Further extensions to these
results were provided in Kwon and Pearson (1977) and
Kwon, Bruckstein and Kailath (1983) where a more
general linear quadratic problem (with both control
and state costs) is considered. The associated Riccati
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equation is extensively analysed; in both papers the stab-
ility constraint x(¹)"0 is implicitly imposed (again by
employing the terminal condition M(¹)"0 where M is
the inverse of the normal Riccati variable P). Interesting-
ly, in the latter paper, the system considered is linear and
time varying, and the cost quadratic and time varying so
the optimal control is now linear and time varying
(u"K(t)x). For each t, K(t) may be determined by solv-
ing a matrix Riccati di!erential equation over the inter-
val [t, t#¹]. The authors show that K(t) may
alternatively be obtained by computing a scattering
matrix via integration of a di!erential equation forwards,
in real time. From the point of view of further progress,
the results of Kleinman, Thomas and Kwon et al. are
important, because they show that addition of a terminal
constraint ensures stability, but limited, because the stab-
ility arguments are appropriate only for unconstrained
linear systems.

With this literature, all the ingredients were at hand
for de"ning a stabilizing form of MPC for constrained
systems. However, the history of the subject took an
unexpected direction that was as exceptional as it was
successful.

2.2. The process control literature

When MPC was "rst advocated by Richalet, Rault,
Testud and Papon (1976) for process control, several
proposals for MPC had already been made, such as that
due to Lee and Markus quoted above, and, even earlier,
a proposal, by Propoi (1963), of a form of MPC, using
linear programming, for linear systems with hard con-
straints on control. However, the early proponents of
MPC for process control proceeded independently, ad-
dressing the needs and concerns of industry. Existing
techniques for control design, such as linear quadratic
control, were not widely used, perhaps because they were
regarded as addressing inadequately the problems raised
by constraints, nonlinearities and uncertainty. The ap-
plications envisaged were mainly in the petro-chemical
and process industries, where economic considerations
required operating points (determined by solving linear
programmes) situated on the boundary of the set of
operating points satisfying all constraints. The dynamic
controller therefore has to cope adequately with con-
straints that would otherwise be transgressed even with
small disturbances. The plants were modelled in the early
literature by step or impulse responses. These were easily
understood by users and facilitated casting the optimal
control and identi"cation problems in a form suitable for
existing software.

Thus, IDCOM (identi"cation and command), the form
of MPC proposed in Richalet et al. (1976,1978), employs
a "nite horizon pulse response (linear) model, a quadratic
cost function, and input and output constraints. The
model permits linear estimation, using least squares. The

algorithm for solving the open-loop optimal control
problem is a &dual' of the estimation algorithm. As in
dynamic matrix control (DMC; Cutler & Ramaker, 1980;
Prett & Gillette, 1980), which employs a step response
model but is, in other respects, similar, the treatment of
control and output constraints is ad hoc. This limitation
was overcome in the second-generation program,
quadratic dynamic matrix control (QDMC; GarcmHa
& Morshedi, 1986) where quadratic programming is
employed to solve exactly the constrained open-loop
optimal control problem that results when the system is
linear, the cost quadratic, and the control and state
constraints are de"ned by linear inequalities. QDMC
also permits, if required, temporary violation of some
output constraints, e!ectively enlarging the set of states
that can be satisfactorily controlled. The third generation
of MPC technology, introduced about a decade ago,
`distinguishes between several levels of constraints (hard,
soft, ranked), provides some mechanism to recover from
an infeasible solution, addresses the issues resulting from
a control structure that changes in real time, and allows
for a wider range of process dynamics and controller
speci"cationsa (Qin & Badgwell, 1997). In particular, the
Shell multivariable optimizing control (SMOC) algo-
rithm allows for state-space models, general disturbance
models and state estimation via Kalman "ltering (Mar-
quis & Broustail, 1988). The history of the three genera-
tions of MPC technology, and the subsequent evolution
of commercial MPC, is well described in the last refer-
ence. The substantial impact that this technology has had
on industry is con"rmed by the number of applications
(probably exceeding 2000) that make it a multi-million
dollar industry.

The industrial proponents of MPC did not address
stability theoretically, but were obviously aware of its
importance; their versions of MPC are not automatically
stabilizing. However, by restricting attention to stable
plants, and choosing a horizon large compared with the
&settling' time of the plant, stability properties associated
with an in"nite horizon are achieved. Academic research,
stimulated by the unparalleled success of MPC, com-
menced a theoretical investigation of stability. Because
Lyapunov techniques were not employed initially, stabil-
ity had to be addressed within the restrictive framework
of linear analysis, con"ning attention to model predictive
control of linear unconstrained systems. The original
"nite horizon formulation of the optimal control prob-
lem (without any modi"cation to ensure stability) was
employed. Researchers therefore studied the e!ect of con-
trol and cost horizons and cost parameters on stability
when the system is linear, the cost quadratic, and hard
constraints are absent. See GarcmHa et al. (1989) for an
excellent review of this literature. A typical result estab-
lishes the existence of "nite control and cost horizons
such that the resultant model predictive controller is
stabilizing.
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2.3. Generalized predictive control

Largely independently a closely related methodology
developed in the adaptive control literature. In this litera-
ture models of the form

A(q~1)y(t)"B(q~1)u(t)#C(q~1)e(t),

where y is the output, u the control, and e a white-noise
disturbance and A, B and C are polynomials in the
backward shift operator q~1, were employed because of
their greater generality than impulse or step response
models. De"ciencies in minimum variance control
(As stroK m, 1970) (a precursor of generalized predictive con-
trol with horizon N"1) motivated an extension of the
horizon yielding a formulation (De Keyser & Van
Cauwenberghe, 1979; Ydstie, 1984; Peterka, 1984) and
(Clarke, Mohtadi & Tu!s, 1987a,b) that, in its determin-
istic version, is very close to that of MPC. Because of the
"nite horizon, stability was not guaranteed in the original
versions of generalized predictive control and was
achieved, as in early versions of MPC, by tuning cost and
horizon parameters, an approach criticized in Bitmead et
al. (1990) as &playing games' instead of enforcing stability
by modi"cation of the optimal control problem. This
criticism was supported by examples presented in Soeter-
boek (1992). At the commencement of the 1990s, stability
of predictive controllers was successfully addressed in
a series of papers (Mosca, Lemos & Zhang, 1990; Clarke
& Scattolini, 1991; Mosca & Zhang, 1992); these papers
established stability of linear, unconstrained, input/out-
put systems (systems for which the state is not accessible).
Stability is achieved by imposing terminal equality con-
straints on inputs and outputs over a "nite interval; this
constraint is equivalent to the terminal constraint em-
ployed by Kleinman and Kwon et al. if the interval is
long enough and observability conditions are satis"ed.
Because the system is linear, the cost quadratic, the
terminal constraint a linear equality, and control and
state constraints are absent, the optimal control may be
computed algebraically. The early literature on generaliz-
ed predictive control is an important strand in the devel-
opment of the subject but, because it does not deal with
control and state constraints, falls outside the scope of
this review.

2.4. The evolution of model predictive control

Early versions of MPC and generalized predictive con-
trol did not automatically ensure stability, thus requiring
tuning. It is therefore not surprising that research in the
1990s devoted considerable attention to this topic. In-
deed, concern for stability has been a major engine for
generating di!erent formulations of MPC. In time, di!er-
ences between model predictive, generalized predictive,
and receding horizon control became irrelevant; we
therefore use MPC as a generic title in the sequel for that

mode of control in which the current control action is
determined by solving on-line an optimal control prob-
lem. Our purpose here (Section 2.4) is not to review
comprehensively recent literature but merely to intro-
duce a few signi"cant advances made in the 1990s that
motivate the analysis presented in Section 3.

2.4.1. Stability analysis
Model predictive control of constrained systems is

nonlinear necessitating the use of Lyapunov stability
theory, a tool neglected in the MPC literature during the
1970s and the early 1980s with a notable exception: Chen
and Shaw (1982) showed, in a paper unfortunately not
noticed for some time, that the value function (of a "nite
horizon optimal control problem) could be used as
Lyapunov function to establish stability of continuous
time receding horizon control of unconstrained systems
when a terminal equality constraint is employed. These
results on continuous-time systems were not extended
until Mayne and Michalska (1990). Keerthi and Gilbert
(1988) "rst employed the value function as a Lyapunov
function for establishing stability of model predictive
control of time-varying, constrained, nonlinear, discrete-
time systems (when a terminal equality constraint is
employed); thereafter, the value function was almost uni-
versally employed as a natural Lyapunov function for
stability analysis of model predictive control.

2.4.2. Stabilizing modixcations to P
N
(x)

The 1990s saw many proposals for modifying the
open-loop optimal control problem P

N
(x) employed in

model predictive control of constrained and/or nonlinear
systems so that closed-loop stability could be guaranteed.
We list these proposals below, deferring a more detailed
discussion until Section 3. The modi"cations correspond,
in the main, to proposals for the terminal cost F( ) ) and
the terminal constraint set X

f
. Reference should be made

to Section 1.2 where the open-loop optimal control prob-
lem P

N
(x) is de"ned. To simplify presentation, we give

discrete-time analogues of results derived for continu-
ous-time systems.

2.4.2.1. Terminal equality constraint. In this version of
model predictive control, the terminal cost F( ) ) and the
terminal constraint x(N)3X

f
in the open-loop optimal

control problem P
N
(x) satisfy F(x),0 and X

f
"M0N.

The "rst proposal for this form of model predictive con-
trol for time-varying, constrained, nonlinear, discrete-time
systems was made by Keerthi and Gilbert (1988). This
paper is particularly important; it provides a de"nitive
stability analysis of this version of discrete-time receding
horizon control (under mild conditions of controllability
and observability) and shows the value function <0

N
(x)

associated with the "nite horizon optimal control
problem approaches that of the in"nite horizon problem
as the horizon approaches in"nity. This paper remains
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a key reference on the stabilizing properties of model
predictive control and subsumes much of the later litera-
ture on discrete-time MPC that uses a terminal equality
constraint. It is an interesting fact that model predictive
control with a terminal equality constraint can also be
employed to stabilize systems that cannot be stabilized
by continuous feedback controllers (Meadows, Henson,
Eaton & Rawlings, 1995).

Continuous-time versions are described in Chen and
Shaw (1982) and Mayne and Michalska (1990). By de"n-
ing a non-minimal state in terms of current and past
inputs and outputs, Chisci and Mosca (1994) establish
stability of model predictive control of linear uncon-
strained systems of the form A(q~1)y(t)"B(q~1)u(t)
where A and B are polynomials in the delay operator
q~1; the terminal constraint x(N)"0 translates to
constraints on u(t) and y(t) over the interval
N,N#1,2, N#n!1, where n is the state dimension.
A similar constraint is employed in Bemporad, Chisci
and Mosca (1995) for linear unconstrained systems of the
form A(q~1)y(t)"B(q~1)u(t)#C(q~1)e(t) where Me(t)N is
a white-noise process (the cost is de"ned as a conditional
expectation). More relevant to this review are the papers
by De Nicolao, Magni and Scattolini (1996a) and Magni
and Sepulchre (1997) that employ the terminal constraint
x(N)"0 to establish closed-loop stability when the sys-
tem is nonlinear and unconstrained.

2.4.2.2. Terminal cost function. One of the earliest pro-
posals for modifying P

N
(x) to ensure closed-loop stabil-

ity was the addition of a terminal cost. In this version of
model predictive control, the terminal cost F( ) ) is non-
trivial and there is no terminal constraint so that
X

f
"Rn. The proposal was made (Bitmead et al., 1990)

in the context of predictive control of unconstrained
linear system for which the choice F(x)"(1/2)xTP

f
x is

appropriate. The matrix P
f
, the terminal value of the

Riccati di!erence equation, is chosen so that the se-
quence MP

j
N, obtained by solving the Riccati di!erence

equation in reverse time ( j is time-to-go) with terminal
condition P

0
"P

f
is monotonically non-increasing (i.e.

P
j`1

4P
j
for all j50). Using the fake algebraic Riccati

equation (FARE), the authors show (under mild
conditions) that this choice yields a value function
<0

N
(x)"(1/2)xTP

N
x and a receding horizon controller

i
N
(x)"K

N
x that is stabilizing. The methodology for

establishing stability is interesting and can be extended to
nonlinear systems; we discuss this more fully in Section 3.
The controller i

N
(x)"K

N
x obtained by Bitmead et al.

may (and should) be computed o!-line.
A more interesting example is a proposal (Rawlings

& Muske, 1993) that stimulated much subsequent re-
search. When the system being controlled is linear and
stable, and subject to a convex control constraint, the
terminal cost F( ) ) is chosen to be the (in"nite horizon)
value function associated with the (stabilizing) controller

u"i
f
(x),0. Gauthier and Bornard (1983) similarly use

a local controller i
f
(x),0 to convert an in"nite horizon,

open-loop optimal control problem to a "nite horizon
problem and establish stability when the system is linear
and unconstrained. These results are equivalent to hav-
ing an in"nite cost horizon and a "nite control horizon.
In interesting related research, Alamir and Bornard
(1995) employ a control horizon N and a cost horizon
M and show that closed-loop stability ensues if M is large
enough.

Can this technique for achieving stability (by adding
only a terminal cost) be successfully employed for con-
strained and/or nonlinear systems? From the literature
the answer may appear a$rmative. However, in this
literature there is an implicit requirement that x(N)3X

f
is satis"ed for every initial state x in a given compact set,
and this is automatically satis"ed if N is chosen su$-
ciently large; the constraint x(N)3X

f
then need not be

included explicitly in the optimal control problem actual-
ly solved on-line. Whether this type of model predictive
control is regarded as having only a terminal cost or
having both a terminal cost and a terminal constraint is
a matter of de"nition; we prefer to consider it as belong-
ing to the latter category as the constraint is necessary
even though it is automatically satis"ed if N is chosen
su$ciently large.

2.4.2.3. Terminal constraint set. In this version of model
predictive control, X

f
is a subset of Rn containing

a neighbourhood of the origin and F(x),0 (no terminal
cost). The purpose of the model predictive controller is to
steer the state to X

f
in "nite time. Inside X

f
, a local

stabilizing controller i
f
( ) ) is employed; this form of

model predictive control is therefore sometimes referred
to as dual mode, and was proposed, in the context of
constrained, continuous-time, nonlinear systems, in
Michalska and Mayne (1993) where a variable horizon
N is employed. Fixed horizon versions for constrained,
nonlinear, discrete-time systems are proposed in Chisci,
Lombardi and Mosca (1996) and Scokaert, Mayne and
Rawlings (1999). Dual mode control is also employed, in
a di!erent context, in Sznaier and Damborg (1990).

2.4.2.4. Terminal cost and constraint set. Most recent
model predictive controllers belong to this category.
There are a variety of good reasons for incorporating
both a terminal cost and a terminal constraint set in the
optimal control problemP

N
(x). Ideally, the terminal cost

F( ) ) should be the in"nite horizon value function <0
=

( ) );
if this were the case, then <0

N
( ) )"<0

=
( ) ), on-line optim-

ization would be unnecessary, and the known advantages
of an in"nite horizon, such as stability and robustness,
would automatically accrue. Nonlinearity and/or con-
straints render this impossible, but it is possible to choose
F( ) ) so that it is exactly or approximately equal to <0

=
( ) )

in a suitable neighbourhood of the origin. Choosing
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X
f

to be an appropriate subset of this neighbourhood
yields many advantages and motivates the choice of F( ) )
and X

f
in most of the examples of this form of model

predictive control.
Perhaps the earliest proposal for this form of model

predictive control is the remarkably prescient paper
(Sznaier & Damborg, 1987). The system considered is
linear ( f (x, u)"Ax#Bu) and the state and control con-
straint sets, X and U respectively, are polytopes. Then
F(x) and i

f
(x)"K

f
x are chosen to be the value function

and optimal controller for the unconstrained in"nite hor-
izon problem; this is a standard ¸Q problem so F( ) ) and
i
f
( ) ) are easily computed. The terminal constraint set

X
f

is chosen to be the maximal output admissible set
(Gilbert & Tan, 1991) of the system x`"(A#BK

f
)x.

When the current state is x, the horizon N"N
x

can be
chosen so that the terminal state x0(N; x, 0) (correspond-
ing to the optimal control u0(x)) lies in X

f
; hence

x0(N;x)3X
f

even though P
N
(x) does not include the

terminal constraint x(N)3X
f
. With this choice of

N, <0
N
(x)"<0

=
(x) and i

N
(x)"i

=
(x); stability results as

proven in Chmielewski and Manousiouthakis (1996), and
Scokaert and Rawlings (1998). In this literature, the set
X

f
is introduced as a consequence of the control and

state constraints that render determination of <0
=

(x) im-
possible (except in X

f
).

For the case when the system is nonlinear but there are
no state or control constraints, Parisini and Zoppoli
(1995) and Jadbabaie, Yu and Hauser (1999) (in the
context of continuous-time systems) use a stabilizing
local control law i

f
( ) ), a terminal cost function F( ) ) that

is a (local) Lyapunov function for the stabilized system,
and a terminal constraint set X

f
that is a level set of F( ) )

and is positively invariant for the system x`"f (x,i
f
(x)).

The terminal constraint is omitted from the problem
P

N
(x) solved on-line but it is nevertheless shown that this

constraint is automatically satis"ed for all initial states in
a level set of <0

N
( ) ); the resultant closed-loop system is

asymptotically (or exponentially) stabilizing with a re-
gion of attraction that is this level set of <0

N
( ) ).

When the system is both nonlinear and constrained,
F( ) ) and X

f
include features from both of the two ex-

amples immediately above. In both De Nicolao, Magni
and Scattolini (1996c) and Chen and AllgoK wer (1998b)
(modulo the fact that continuous-time systems are con-
sidered in the latter paper) i

f
( ) ) is chosen to stabilize the

linearized system x`"Ax#Bu, where A :"f
x
(0, 0) and

B :"f
u
(0, 0). AllgoK wer employs a quadratic and De

Nicolao et al. a non-quadratic terminal cost F( ) ). Both
employ a terminal constraint set X

f
that is positively

invariant for the nonlinear system x`"f (x,i
f
(x)) and

that satis"es X
f
LX and i

f
(X

f
)LU. Chen and Al-

lgoK wer refer to their approach as &quasi-in"nite horizon
predictive control' because the "nite horizon optimal
control problem they employ approximates the full in"-
nite horizon problem.

2.5. Conclusion

The discussion above reveals the presence of several
&ingredients' that have been found useful in developing
stabilizing model predictive controllers; these ingredients
are a terminal cost F( ) ), a terminal constraint set X

f
, and

a local controller i
f
( ) ). In Section 3, we present condi-

tions on F( ) ), X
f
, and i

f
( ) ) that, if satis"ed, ensure that

the model predictive controller is stabilizing and illus-
trate these conditions by showing that they are satis"ed
in most of the controllers presented above.

3. Stability and inverse optimality

3.1. Notation

For any function /(x), let
H/ (x, u) denote the change in

/( ) ) as the state changes from x to x`"f (x, u), i.e.

H/ (x, u) :"/ ( f (x, u))!/(x).

H/ (x, u) is the analogue of /Q (x, u) in the continuous-time
case (when the system satis"es x5 "f (x, u)).

3.2. Introduction

Two distinct, but related, methods for establishing
stability have evolved in the literature, each yielding its
own insights. Both approaches employ the value function
<0

N
( ) ) as a Lyapunov function. We assume, in the sequel,

that the value function is continuous. The "rst approach,
which we will call the direct method, employs the value
function and obtains conditions on F( ) ), X

f
, and i

f
( ) )

that ensure

H
<0

N
(x, i

N
(x))#l(x,i

N
(x))40. (3.1)

In this methodology, employed inter alia in Keerthi and
Gilbert (1988), Mayne and Michalska (1990), Rawlings
and Muske (1993), Michalska and Mayne (1993),
Chmielewski and Manousiouthakis (1996), Scokaert and
Rawlings (1998) and Chen and AllgoK wer (1998), compu-
tation of <0

N
(x`), x` :"f (x,i

N
(x)) is avoided by comput-

ing an upper bound <
N
(x`, u8 (x)) for <0

N
(x`) using

a feasible control u8 (x) for P
N
(x`).

The second method uses the fact that

H
<0

N
(x, i

N
(x))#l(x,i

N
(x))"<0

N
(x`)!<0

N~1
(x`)

and shows the right-hand side of this equation is
negative, either directly or by showing <0

1
( ) )4<0

0
( ) )

and exploiting monotonicity (<0
1
( ) )4<0

0
( ) ) implies

<0
i`1

( ) )4<0
i
( ) ) for all i50). This approach has been

used inter alia in Chen and Shaw (1982), Bitmead et al.
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(1990), Bemporad et al. (1995), De Nicolao et al.
(1996a,1996c), Magni and Sepulchre (1997), De Nicolao
and Sepulchre (1997), Meadows (1997) and Primbs and
NevisticH (1997). These two approaches are reviewed in
AllgoK wer and Zheng (1999).

3.3. Direct method

Our purpose here is to distill from the extensive litera-
ture on model predictive control essential principles, pre-
sented below as axioms, that ensure closed-loop stability.
This requires the determination of appropriate condi-
tions on the ingredients F( ) ), X

f
and i

f
( ) ) present in

most forms of model predictive control. For each integer
k, let X

k
denote the set of states x steerable, by admissible

control sequences to X
f

in k steps or less. An admissible
(or feasible) control sequence u"Mu(0), u(1),2, u(k!1)N
satis"es the control, state and terminal constraints, i.e.
u(i)3U for i"0,1,2, k!1, xu(i;x)3X for i"0,1,2, k
and xu(k; x)3X

f
. The set of states that can be controlled

by model predictive control with "xed horizon N is X
N
.

Suppose then, that x3X
N
, and that the control sequence

u0(x) that solves P
N
(x) has been determined. Let

x0(x)"Mx,x0(1; x),2, x0(N;x)N denote the optimal state
trajectory. The model predictive control u"i

N
(x)"

u0(0;x) steers the initial state x to the successor state
x`"x0(1; x)"f (x,i

N
(x)). We wish to determine a feas-

ible control sequence u8 (x) for x` and hence, an upper
bound for <0

N
(x`). Since Mu0(0; x), u0(1; x),2,

u0(N!1; x)N is a feasible control sequence for
P

N
(x), x0(N;x)3X

f
, and the (abbreviated) control se-

quence Mu0(1;x),2, u0(N!1; x)N steers x` to
x0(N;x)3X

f
. To obtain a feasible control for P

N
(x`), we

add one further element u to this sequence, obtaining
Mu0(1;x),2, u0(N!1; x), uN; this sequence will be feasible
for P

N
(x`) if u3U and u steers x0(N;x)3X

f
to a state

f (x0(N; x), u)3X
f

which is the case if u"i
f
(x0(N;x)) and

X
f

and the local controller i
f
( ) ) have the following

properties:

X
f
LX, i

f
(x)3U and f (x,i

f
(x))3X

f
∀x3X

f

so that X
f

is positively invariant when the control law
is i

f
( ) ). If these conditions are satis"ed, the control

sequence

u8 (x) :"Mu0(1;x),2, u0(N!1;x), i
f
(x0(N;x))N

is feasible for P
N
(x`). The state trajectory resulting from

initial state x`"x0(1; x) and control sequence u8 (x) is

x8 (x) :"Mx0(1;x),2, x0(N;x), f (x0(N;x), i
f
(x0(N; x))N.

The associated cost is

<
N
(x`, u8 (x))"<0

N
(x)!l(x,i

N
(x))!F(x0(N;x))

#l(x0(N;x), i
f
(x0(N; x))

#F ( f (x0(N;x), i
f
(x0(N;x))).

This cost, which is an upper bound for <0
N
(x`), satis"es

<
N
(x`, u8 (x))4<0

N
(x)!l(x,i

N
(x))

if
H
F (x, i

f
(x))#l(x,i

f
(x))40, i.e. if

[
H
F #l](x,i

f
(x))40 ∀x3X

f

since then the sum of the last three terms in the expres-
sion for <

N
(x`, u8 (x)) is less than or equal to zero; this

condition holds if F( ) ) is a control Lyapunov function in
a neighbourhood of the origin (i.e. the in"mum of
F( f (x, u)!F(x)) with respect to u is less than zero in this
neighbourhood) and i

f
( ) ) and X

f
are chosen appro-

priately. If this condition holds, then (3.1) also holds for
all x3X

N
which is su$cient to ensure that the state of the

closed-loop system x`"f (x, i
N
(x)) converges to zero as

kPR if its initial state lies in X
N
. This motivates the

following conditions that, if satis"ed, ensure closed-loop
asymptotic (exponential) stability if further minor as-
sumptions are satis"ed:

A1: X
f
LX, X

f
closed, 03X

f
(state constraint satis-

"ed in X
f
).

A2: i
f
(x)3U, ∀x3X

f
(control constraint satis"ed in

X
f
).

A3: f (x,i
f
(x))3X

f
, ∀x3X

f
(X

f
is positively invariant

under i
f
( ) )).

A4: [
H
F #l](x,i

f
(x))40, ∀x3X

f
(F( ) ) is a local

Lyapunov function).

Assumption A4 implies A3 if X
f

is a level set of F( ) );
this is a common situation. These conditions provide
a concise characterization, as we show in Section 3.7, of
the model predictive controllers described earlier. The
control sequence u8 (x), in addition to providing an upper
bound for <0

N
(x), can also be usefully employed to initial-

ize the algorithm for solving P
N
(x`). The conditions are,

of course, merely su$cient.

3.4. Monotonicity of M<0
j
( ) )N

To introduce this approach, we note, as observed by
Chen and Shaw (1982), that, by the principle of optimal-
ity with x` :"f (x, i

N
(x)):

<0
N
(x)"l(x,i

N
(x))#<0

N~1
(x`)

for all x3X
N

so that

<0
N
(x)"l(x,i

N
(x))#<0

N
(x`)#[<0

N~1
(x`)!<0

N
(x`)]

and

H
<0

N
(x, i

N
(x))#l(x,i

N
(x))"[<0

N
(x`)!<0

N~1
(x`)]. (3.2)
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Hence the desired inequality (3.1) is recovered if
<0

N
(x)4<0

N~1
(x) for all x3X

N~1
. This, if axioms A1}A4

hold, can be shown to be true in much the same way as
was employed in Section 3.2; an upper bound for <0

N
(x`)

can be employed by taking the (optimizing) control se-
quence (consisting of N!1 controls) for P0

N~1
(x`) and

adding the control i
f
(x0(N!1;x`))"i

f
(x0(N; x)); the

resultant sequence is precisely u8 (x) de"ned above and is
feasible for P0

N~1
(x`). Hence

<
N
(x`, u8 (x))"<0

N~1
(x`)#l(x0(N;x)),i

f
(x0(N; x))

!F(x0(N;x))#F( f (x0(N;x)),i
f
( f (x0(N;x)))

5<0
N
(x`)

which, by A4, implies <0
N
(x`)4<0

N~1
(x`); this inequal-

ity and (3.2) establish the desired inequality (3.1). This
procedure for establishing stability was used, for
example, by De Nicolao et al. (1996a) for unconstrained
nonlinear systems, by Magni and Sepulchre (1997) for
unconstrained, nonlinear, continuous-time systems
and by De Nicolao et al. (1996c) for constrained, non-
linear systems. The same result can be obtained using
monotonicity. Bitmead et al. (1990) show, in the context
of linear quadratic (unconstrained) problems where
<

i
(x)"xTP

i
x, that, if <0

1
( ) )4<0

0
( ) ), then <0

i`1
( ) )4

<0
i
( ) ) for all i50; this is the monotonicity property that,

for constrained nonlinear systems, may be expressed as
follows:

Suppose <0
1
(x)4<0

0
(x) for all x3X

0
"X

f
. Then

<0
i`1

(x)4<0
i
(x) for all x3X

i
, all i50.

To prove this assertion, assume<0
i
(x)4<0

i~1
(x) for all

x3X
i~1

. Then

<0
i`1

(x)!<0
i
(x)"l(x,i

i
(x))#<0

i
( f (x,i

i
(x)))

!l(x,i
i
(x))!<0

i~1
( f (x, i

i
(x))

40 for all x3X
i
,

where we make use of the fact that f (x,i
i
(x))3X

i~1
if

x3X
i
. Induction establishes the assertion. In view of the

monotonicity property it is merely necessary to establish
that <0

1
(x)4<0

0
(x) for all x3X

0
"X

f
:

Suppose F( ) ), X
f

and i
f
( ) ) satisfy A1}A4. Then

<0
1
(x)4<0

0
(x) for all x3X

0
"X

f
.

This may be proven as follows:

<0
1
(x)"l(x,i

1
(x))#<0

0
( f (x, i

1
(x)))

(by principle of optimality)

4l(x,i
f
(x))#<0

0
( f (x, i

f
(x)))

(by optimality of i
1
( ) ))

"l(x,i
f
(x))#F( f (x,i

f
(x)))

(by de"nition of <0
0
( ) ))

4F(x)"<0
0
(x) (by A4).

It then follows that <0
N
(x)4<0

N~1
(x) for all x3X

N~1
if

A1}A4 are satis"ed; this establishes the desired inequality
(3.1) and, hence, asymptotic (exponential) stability of the
closed-loop system.

3.5. Inverse optimality

Bitmead et al. (1990) show, in the context of linear,
unconstrained systems, that if the monotonicity property
holds, the ("nite horizon) value function <0

N
( ) ) is also the

inxnite horizon value function of a modi"ed problem, an
interesting example of inverse optimality. The known
advantages of in"nite horizon optimal control then
accrue. Of course, stability can be established inde-
pendently, as shown above. Inverse optimality can be
easily extended to the nonlinear case as shown in Magni
and Sepulchre (1997) for nonlinear, unconstrained con-
tinuous-time systems. Here we deal with the nonlinear,
discrete-time case. Eq. (3.2) may be rewritten in the form

<0
N
(x)"lM (x, i

N
(x))#<0

N
( f (x, i

N
(x))) (3.3)

for all x3X
N

where

lM (x, u) :"l(x, u)#[<0
N~1

!<0
N
]( f (x,i

N
(x)))

and lM (x, u)5l(x, u)5cD(x, u)D2 if A1}A4 hold. Eq. (3.3)
is a fake Hamilton}Jacobi}Bellman algebraic equation,
corresponding to the in"nite horizon optimal control
problem P

=
(x) with l( ) ) replaced by lM ( ) ); it is the ana-

logue of the fake Riccati equation introduced by
Poubelle, Bitmead and Gevers (1988). The controller
i
N
( ) ) is optimal for the modi"ed problem. Hence, model

predictive control of unconstrained systems, linear or
nonlinear, derived using a "nite horizon optimal control
problem, inherits the known robustness properties of
in"nite horizon optimal control as shown in Magni
and Sepulchre (1997) for nonlinear systems satisfying
x5 "f (x)#g(x)u.

3.6. Continuous-time systems

Suppose the system is described by

x5 "f (x, u)

and that

<(x, t, u( ) )) :"P
T

t

l(x(s), u(s)) ds#F(x(¹ )),
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where x(s)"xu(s;x, t). The constraints remain the same:

x(t)3X, u(t)3U, x(¹)3X
f
.

For all q3[0,¹], let Xq denote the set of states that can
be steered to X

f
, by an admissible control, in time q. Let

<0(x, t), denote the value function and i0(x, t) the optimal
control law for problem P(x, t) de"ned by

<0(x, t)"minM<(x, t, u) D u3U
*t,T+

N,

where U
*t,T+

is the set of admissible controls de"ned on
[t,¹] (satisfying control, state and terminal constraints).
Using time invariance, the optimal control problem sol-
ved on-line is P

T
(x) :"P(x, 0) and its value function is

<0
T
( ) ) :"<0(x, 0). The optimizing control and state tra-

jectories, assumed to exist, are u0( ) ;x) and x0( ) ; x) (the
argument x indicates the initial state is x at t"0) so that

<0
T
(x) :"<0(x, 0)"<(x, 0, u0( ) )).

Here the su$x ¹ is the time-to-go whereas t in <0(x, t) is
current time. The implicit model predictive controller is
i
T
(x) :"u0(0;x) (practically, a variant of model predictive

control in which u0( ) ;x) is applied for time d before P
T

is
resolved would be employed). Given a function
/( ) ): RnPR, let /Q (x, u) denote its directional derivative
in the direction f (x, u); if /( ) ) is di!erentiable

/Q (x, u)"/
x
(x) f (x, u).

The ingredients F( ) ), X
f

and i
f
( ) ) for the continuous-

time case are required to satisfy

B1: X
f
LX, X

f
closed, 03X

f
.

B2: i
f
(x)3U, ∀ x3X

f
.

B3: X
f

is positively invariant for x5 "f (x,i
f
(x)).

B4: [FQ #l](x,i
f
(x))40, ∀x3X

f
.

Condition B4 implies B3 if X
f

is a level set of F( ) ).
Conditions B1}B4 ensure

[<Q
T
#l](x,i

T
(x))40

for all x3X
T

and, hence, are su$cient, modulo further
modest conditions, for asymptotic (exponential) stability
of the closed-loop system.

A monotonicity property, analogous to that for
discrete-time systems, may be established under the
(strong) assumption that <0( ) ) is continuously di!erenti-
able (constraints may invalidate this assumption):

Suppose (L/Lt)<0(x,¹)50 for all x3X
0
"X

f
. Then

(L/Lt)<0(x, t)50 for all x3X
T~t

, all t3[0,¹].

This result is a direct consequence of the fact that

(L/Lt)<0(x, t)"(L/Lt)<0(x0(s;x, t), s)

for all s, t3[0,¹]. If <0( ) ) is continuously di!erentiable,
the fake H}J equation is (Magni & Sepulchre, 1997)

lM (x,i
T
(x))#(L/Lx)<0(x,0) f (x, i

T
(x))"0,

where <0(x, 0)"<
T
(x) and

lM (x, u) :"l(x, u)#(L/Lt)<0(x, 0)

so that lM (x, u)5l(x, u) if (L/Lt)<0(x, 0)*0 for all x3X
T

which is the case (by the monotonicity property) if
(L/Lt)<(x,¹)50 for all x3X

0
"X

f
:

Suppose B1}B4 are true. Then (L/Lt)<0(x,¹)50 for all
x3X

0
"X

f
.

This may be proven as before. Let i
0
( ) ) :"i0( ) ,¹)

denote the optimal control law when the time-to-go is 0,
i.e. current time is t. Then:

!(L/Lt)<0(x,¹)"l(x,i
0
(x))#(L/Lx)<0(x,¹) f (x,i

0
(x))

4l(x,i
f
(x))#(L/Lx)<0(x,¹) f (x,i

f
(x))

"l(x,i
f
(x))#FQ (x, i

f
(x))40,

where the "rst line follows from the principle of optimal-
ity, the second from the optimality of i

0
( ) ), and the third

by B4. If B1}B4 are satis"ed,

[<Q 0
T
#lM ](x,i

T
(x))"0,

where lM ( ) )5l( ) ) from which asymptotic (exponential)
stability may be deduced.

3.7. Characterization of model predictive controllers

We showed above that, regardless of whether the direct
or monotonicity approach is used, closed-loop asymp-
totic stability, with a domain of attraction X

N
, results if

A1}A4 hold. These axioms may be satis"ed by a variety
of choices, giving rise to many variants of model predic-
tive control. Our purpose here is to show that all the
model predictive controllers discussed above satisfy these
axioms.

3.7.1. Terminal state
This variant of model predictive control (Keerthi

& Gilbert, 1988) is characterized by its terminal con-
straint x(N)"0 so that X

f
"M0N. A terminal cost is

pointless so F( ) ) is chosen to be zero. The local controller
must maintain the state in X

f
. The ingredients for this

form of model predictive control are, therefore F(x),0
(no terminal cost), X

f
"M0N (terminal equality con-

straint), and i
f
(x),0 (zero control maintains the state

at the origin). The functions F( ) ) and i
f
( ) ) need only be

de"ned on X
f
, i.e. at x"0. Satisfaction of the axioms is

easily checked. Since X
f
"M0N3X, A1 is satis"ed. Also
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i(0)"03U so that A2 is satis"ed. A3 follows from the
fact that f (0,i

f
(0))"f (0, 0)"03X

f
. Finally,

H
F (0,i

f
(0))#l(0, i

f
(0))"0

since i
f
(0)"0, f (0, 0)"0 and l(0, 0)"0, ensuring satis-

faction of A4. Asymptotic (exponential) stability with
a region of attraction X

N
results.

3.7.2. Terminal cost
This variant of model predictive control is character-

ized by the use of a terminal cost function F( ) ); a terminal
constraint is not used so that X

f
"Rn. It is generally

necessary to have a terminal constraint (even if it can be
omitted in the on-line computations if N is su$ciently
large) if the system is nonlinear or if the system is linear
and constrained but unstable. This leaves the linear,
unconstrained case (Bitmead et al., 1990) and the linear,
constrained, stable, case (Rawlings & Muske, 1993).

3.7.2.1. Linear, unconstrained systems. Here f (x, u)"
Ax#Bu, and l(x, u)"(1/2)(DxD2

Q
#DuD2

R
) where Q'0 and

R'0. Since the system is unconstrained, X"Rn and
U"Rm, so that A1}A3 are trivially satis"ed. Let
i
f
(x) :"K

f
x stabilize the system ((A,B) is assumed sta-

bilizable), and let P
f
'0 satisfy the Lyapunov equation

AT
f
PA

f
#Q

f
"0, A

f
:"A#BK

f
,

Q
f

:"Q#KT
f
RK

f

Then F(x) :"(1/2)xTP
f
x satis"es A4 (with equality) and,

with these ingredients, viz. F(x) :"(1/2)xTP
f
x, X

f
"Rn

(no terminal constraint) and i
f
(x)"K

f
x, the closed-

loop system is asymptotically (exponentially) stable with
a region of attraction Rn.

3.7.2.2. Linear, constrained, stable systems. The data are
the same as in the "rst case except that, in addition, the
system is stable and constrained. The control constraint
set is convex and compact, but there are no state or
terminal constraints so X"X

f
"Rn. It follows from A2

that i
f
( ) ), if linear, must satisfy i

f
(x),0 which is, of

course, the choice made in Rawlings and Muske (1993).
With this choice, A1}A3 are trivially satis"ed. Let P

f
'0

satisfy the Lyapunov equation

ATPA#Q"0.

Then F(x) :"(1/2)xTP
f
x satis"es A4 with equality. It

follows that, with the ingredients F(x) :"(1/2)xTP
f
x,

X
f
"Rn (no terminal constraint) and i

f
(x),0, the

closed-loop system is asymptotically (exponentially)
stable with a region of attraction Rn.

3.7.3. Terminal constraint set
This type of model predictive control, for nonlinear,

constrained systems, employs a terminal constraint

x(N)3X
f

but no terminal cost (F(x),0). It was intro-
duced in Michalska and Mayne (1993), where a variable
horizon N was employed to control constrained, non-
linear continuous-time systems. Fixed horizon versions
for constrained, nonlinear, discrete-time systems, dis-
cussed here, are analysed in Chisci et al. (1996) and
Scokaert et al. (1999). Model predictive control is em-
ployed to drive the state to X

f
in "nite time; inside X

f
,

a local stabilizing controller i
f
(x)"K

f
x is employed

which motivates the name dual-mode MPC that is some-
times employed. In the "xed horizon version, it makes
more sense to employ a terminal cost (such versions of
model predictive control are discussed next), so our dis-
cussion here is brief.

The purpose of the model predictive controller is to
steer any state outside X

f
to X

f
so the controller is

similar to terminal equality constraint MPC except that
M0N is replaced by X

f
. A local controller i

f
( ) ) (usually,

but not necessarily linear) and set X
f

is chosen to satisfy
A1}A3 and to steer any initial state x3X

f
to the origin

exponentially fast. This is a standard problem requiring
stabilizability of the linearized system x`"Ax#Bu and
su$cient smoothness of f ( ) ). To satisfy A4 it is necessary
that l(x,i

f
(x))"0 in X

f
. A suitable choice is

l(x, u) :"a(x)lM (x, u),

where lM (x, u)5c(D(x,u)D)2 (e.g. lM (x, u)"(1/2)(DxD2
Q
#DuD2

R
)

where Q'0,R'0) and a( ) ) is the characteristic func-
tion of X#

f
, i.e. a(x) :"0, x3X

f
and a(x) :"1, x3X#

f
Where X#

f
is the complement of X

f
. Then, A4 is satis"ed

with equality. Since l(x, u)5c
1
'0 for all x3X#

f
, it

follows from (3.1) that x3X
N

is steered by i
N
( ) ) to X

f
in

"nite time. The closed-loop system is exponentially stable
with a domain of attraction X

N
.

3.7.4. Terminal cost and constraint set
This variant of model predictive control employs both

a terminal cost F( ) ) and a terminal constraint x(N)3X
f

in the optimal control problem P
N
(x) and is the version

attracting most attention in current research literature. It
has superior performance when compared with zero state
and terminal constraint set MPC and can handle a much
wider range of problems than terminal cost MPC. We
include in this category those variants of MPC (e.g.
Parisini & Zoppoli, 1995; Jadbabaie et al., 1999) where
a terminal constraint set is implicit in P

N
(x) but not

required in the on-line version because parameters (parti-
cularly the horizon N) are chosen to ensure automatic
satisfaction of the terminal constraint.

3.7.4.1. Linear, constrained systems. Ideally, the ter-
minal cost F( ) ) should be chosen to be <0

=
( ) ) in which

case <0
N
( ) )"<0

=
( ) ) and the virtues of in"nite horizon

optimal control are obtained. This is generally
impossible. However, if the system is linear and con-
strained (Sznaier & Damborg, 1987; Chmielewski
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& Manousiouthakis, 1996; Scokaert & Rawlings, 1998),
F(x) can be chosen to be equal to <0

6#
(x)"(1/2)xTP

f
x,

the value function for the unconstrained in"nite horizon
optimal control problem P6#

=
(x) (with l(x, u)"

(1/2)(DxD2
Q
#DuD2

R
), Q'0, R'0), i

f
(x)"K

f
x the optimal

controller for P6#
=

(x) and X
f

the output admissible set for
x`"A

f
x, A

f
:"A#BK

f
thus satisfying A1}A4 (A4 is

satis"ed with equality). With these ingredients,
F(x)"<0

6#
(x)"<0

=
(x) for all x3X

f
. The closed-loop

system is exponentially stable with a domain of attrac-
tion X

N
. The authors of these papers advocate choosing

the horizon N on-line by increasing N until the optimal
terminal state obtained by solving problemP

N
(x) without

the terminal constraint actually satis"es x0(N; x)3X
f
. Al-

though N varies with x in this version, exponential stabil-
ity follows using <0

=
( ) ) as a Lyapunov function. The

essential role of X
f

is to permit replacement of <0
=

(x)
(the ideal choice for F(x)) by <0

6#
(x)"(1/2)xTP

f
x.

3.7.4.2. Nonlinear, unconstrained systems. This problem
has been addressed, for example, by Parisini and Zoppoli
(1995), Magni and Sepulchre (1997) and Jadbabaie et al.
(1999); the literature on the nonlinear, constrained case,
discussed next, is also relevant. Parisini and Zoppoli
(1995) choose, as in Michalska and Mayne (1993),
i
f
(x)"K

f
x to be a locally stabilizing controller and

xTP
f
x to be a Lyapunov function for the linearized

system x`"Ax#Bi
f
(x). By choosing X

f
to be a su$-

ciently small level set of xCxTP
f
x, A1 and A2 are satis-

"ed and xTP
f
x is also a Lyapunov function with

a domain of attraction X
f

for the nonlinear system
x`"f (x, i

f
(x)). Parisini and Zoppoli (1995) now set

F(x)"axTP
f
x so that A3 and A4 are satis"ed and estab-

lish the existence of an integer N, a constant a'0 and
a level set of <0

N
( ) ) such that the terminal constraint

x(N)3X
f

may be omitted from the version of P
N
(x)

solved on-line for all states in this level set; the resultant
closed-loop system x`"f (x, i

N
(x)) is asymptotically

stable with a domain of attraction that is this (un-quanti-
"ed) level set. Jadbabaie et al. (1999) give a de"nitive and
illuminating discussion (in the context of continuous-
time systems) of the unconstrained nonlinear problem.
They show that the essential requirement for stability is
that F( ) ) be a control Lyapunov function in the neigh-
bourhood of the origin; if this is the case, there exists
a constraint set X

f
"Mx DF(x)4rN and a local control

law i
f
( ) ) such that the triple (F( ) ),X

f
,i

f
( ) )) satis"es

A1}A4. They omit the terminal constraint from P
N
(x)

that is, therefore, an unconstrained optimal control prob-
lem and establish, interalia, the following useful (and
surprising) results: (i) if x3X

f
, then x0(N;x)3X

f
and

<0
N
(x)4F(x) (see the appendix) and (ii) if x3!N

r
:"

Mx@ D<0
N
(x@)4rN then x0(N;x)3X

f
"Mx@ DF(x@)4rN so

that the terminal constraint may be omitted from P
N
(x)

for all x3!N
r
. This set is positively invariant under model

predictive control so that the resultant closed-loop sys-

tem (with the terminal constraint omitted from P
N
(x)) is

exponentially stable with a domain of attraction !N
r
.

They also show that for any s'0 there exists a horizon
N

s
such that x0(N

s
; x)3X

f
for every initial state

x3!=
s

:"Mx@ D<0
=

(x@)4sN, thus permitting the region of
attraction to be enlarged.

3.7.4.3. Nonlinear, constrained systems. If the system is
nonlinear and constrained, features of model predictive
control for both the above classes of problems appear
(Chen & AllgoK wer, 1998b; De Nicolao et al., 1996c; De
Nicolao, Magnani, Magni & Scattolini, 1999a; De Nic-
olao, Magni & Scattolini, 1998). Thus, both Chen and
AllgoK wer (1998b) and De Nicolao et al. (1996c) (modulo
the fact that continuous-time systems are considered in
the "rst paper) choose i

f
(x)"K

f
x to stabilize the lin-

earized system x`"Ax#Bu and choose X
f

to satisfy
the set constraints X

f
LX and i

f
(X

f
)LU; these choices

satisfy A1 and A2. Then Chen and AllgoK wer (1998b) in ewect
choose X

f
to be a level set of F( ) ) where F( ) )"(1/2)xTPx is

a control Lyapunov function for the linearized system
x`"Ax#Bu satisfying the Lyapunov equation

F(Ax#Bi
f
(x))!F(x)#lM (x,i

f
(x))"0

for all x where lM (x, u)"bl(x, u), or lM (x, u)"(b/2)(DxD2
Q
#

DuD2
R
) when l(x, u)"(1/2)(DxD2

Q
#DuD2

R
) and b3(1,R) (Chen

and AllgoK wer achieve this by replacing A by A#oI in
the continuous-time Lyapunov equation for the system
x`"Ax#Bu). Replacing l( ) ) by lM ( ) )'l( ) ) provides
su$cient margin to ensure that A3 and A4 are satis"ed
when X

f
is a su$ciently small level set of F( ) ). De

Nicolao et al. (1996c), on the other hand, choose F( ) ) to
be the in"nite horizon cost incurred by the nonlinear
system x`"f (x, i

f
(x)) and X

f
to be a positively invari-

ant region of attraction (for x`"f (x, i
f
(x)). This choice

ensures satisfaction of A3 and A4. In both variants,
A1}A4 are satis"ed and closed-loop asymptotic stability
results. The variant due to De Nicolao et al. (1996c) is
conceptual since neither F( ) ) nor X

f
can be precisely

computed; an implementable version is given in De Nic-
olao, Magnani, Magni and Scattolini (1999a) in which
the in"nite horizon cost terminal cost F( ) ) de"ned above
is approximated by a cost over the "nite horizon M.
Because of the approximation error, F( ) ), which
now denotes the "nite horizon terminal cost, no longer
satis"es A4. To overcome this an X

f
and i

f
( ) ), similar to

those in Chen and AllgoK wer (1998b), are chosen so that
i
f
( ) ) is exponentially stabilizing in X

f
. The horizon

M (which depends on the current state x) is chosen
su$ciently large to ensure that the approximation error
is less than oDxD2

Q
so that

[
H
<0

N
#(1!o)l](x,i

N
(x))40

for all x3X
f

where o3(0, 1) which is su$cient for closed-
loop stability.
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The paper (Alamir & Bornard, 1995) is, in some
respects, similar; a "nite control horizon N and cost
(prediction) horizon M, M'N, are employed. This is
equivalent to having a terminal cost of F(x)"
+M

k/N
l(x(k), u(k)), but no terminal constraint. The

omission of the latter appears to be due to the assump-
tion that PM

N
(x) has a solution for all x3X, all M5N

making it unnecessary to establish the existence of a feas-
ible solution at x` given that one exists at x. Alamir and
Bornard (1995) establish the existence of a M

0
such that

the closed-loop system is asymptotically stable, with a re-
gion of attraction X, for all M5M

0
.

3.8. Other forms of model predictive control

3.8.1. Variable horizon model predictive control
This was proposed in Michalska and Mayne (1993) in

the context of dual-mode model predictive control and
developed (Michalska, 1997); it has also been employed
in contractive model predictive control (see the next
section). In the dual-mode version, a terminal set X

f
is

chosen, and the optimal control problem solved on-line
is

P(x): <0(x)"min
(u,N)

M<
N
(x,u) D u3U

N
(x),

N3M1,2,N
.!9

NN,

where <
N
( ) ) is de"ned as before (1.10). The implicit

model predictive control law is i( ) ): X#
f
PU. Because

of the variable horizon, the value function automatically
satis"es

[
H
<0 #l](x,i(x))40

(A1}A4 are not required). With our assumptions on l( ) ),
the controller i( ) ) steers any x3X

N.!9
CX

f
to X

f
in "nite

time. Inside X
f

a local stabilizing controller i
f
( ) ) is

employed; assumptions A1}A4 ensure its existence.

3.8.2. Contractive model predictive control
Contractive model predictive control, developed in

a series of papers (Polak & Yang, 1993a,b; Yang & Polak,
1993) and Morari and De Oliveira (1998), is Lyapunov
based but avoids the usual di$culties in obtaining
a Lyapunov function by choosing, a priori, a positive-
de"nite function M( ) ) and using on-line optimization, at
event (x, k), to ensure that M(x0(N0(x);x))4bM(x)),
N0(x)51 where b3(0,1). Usually, M(x)"(1/2)xTPx
where xCxTPx is a control Lyapunov function for the
linearized system (linearized at the origin). The variable
horizon optimal open-loop control problem solved on-
line at event (x, k), is

P#53(x): <0(x)"min
(u,N)

M<H(x,(u,N)) D u3U
N
(x),

N3M1,2,N
.!9

NN,

where, as before, U
N
(x) is the set of feasible (admissible)

control sequences satisfying, for the given initial state x,
the control, state and terminal constraints, except now
that the terminal constraint X

f
(x) depends on x and is

de"ned by

X
f
(x) :"Mx@ DM(x@)4bM(x)N.

Solving P#53(x) yields the optimizing sequence
u0(x)"Mu0(i;x)N and the optimal horizon N0(x). In the
original form of contractive MPC, the whole sequence
of controls u0(x)"Mu0(0; x), u(k#1)"u0(1; x),2,
u(k#N0(x)!1)"u0(N0(x)!1;x)N is applied to the
plant open-loop so that u(k)"u0(0;x), u(k#1)"
u0(1;x),2 and, in the absence of noise and model error,
M(x(k#N0

x
; x))4bM(x(k)) for all k where x(k) is the

plant state at time k. The procedure is repeated at time
k#N0(x). If Mt

j
N denotes the set of times when P#53( ) ) is

solved, it follows that, for all j, M(x(t
j
))4bjM(x(0)). Ex-

ponential stability follows provided P#53( ) ) can be solved
at each event (x(k), k) encountered, i.e. provided
x(k)3X

N.!9
for all k. This is not necessarily the case; the

set of states in which P#53(x) has a feasible solution is not
necessarily positively invariant under the model predic-
tive control law. However, a su$ciently small level set of
<0( ) ) is positively invariant, and contractive model pre-
dictive control is asymptotically stabilizing with a region
of attraction that includes this set. Morari and De Ol-
iveira (1998) show how further optimization may be
performed at times between the times Mt

j
N when P#53( ) ) is

solved, thus providing extra feedback.

3.8.3. Stability enforced model predictive control
Stability of model predictive control systems is usually

established using the value function as a Lyapunov func-
tion. A few authors have proposed the use of an addi-
tional Lyapunov function to enforce stability, allowing
performance to be the main objective of model predictive
control. Perhaps the earliest proposal for this version of
model predictive control is due to Sznaier and Damborg
(1990), who employ an auxiliary Lyapunov function v(x)
whose level set Mx D v(x)41N is the state constraint set X.
An extra stability constraint v(f (x, u))(v(x) is added to
the optimal control problem P

N
(x). Bemporad (1998a),

in the context of constrained, linear, discrete-time sys-
tems, proposes the use of an auxiliary quadratic
Lyapunov function; the descent property of the
Lyapunov function is similarly enforced by an additional
stability constraint in the optimal control problemP

N
(x).

The Lyapunov function is easily obtained but is not
necessarily valid everywhere in X

N
. Primbs, Nevistic and

Doyle (1998), in the context of unconstrained nonlinear
continuous-time systems, assume knowledge of a global
control Lyapunov function J( ) ) from which the derive
a globally stabilizing nonlinear controller u"hp(x)
satisfying JQ (x, h(x))4!p(x) where p( ) ) is positive
de"nite. The constraint JQ (x, u)4!p(x) and a terminal

802 D.Q. Mayne et al. / Automatica 36 (2000) 789}814



constraint that replaces X
f

are added to the optimal
control problem to enforce stability. It is di$cult, of
course, to obtain a suitable J( ) ).

3.8.4. System transformation
Linearization theory may, in some applications, be

employed to transform the original nonlinear system,
using state and feedback control transformations, into
a linear system. Model predictive control may be applied
to the transformed system (De Oliveira, Nevistic &
Morari, 1995; Kurtz & Henson, 1997). The optimal con-
trol problem is not, however, transformed into a convex
problem, because the transformed control and state con-
straint sets and the transformed cost are no longer neces-
sarily convex. Keerthi (1986) and Rossiter, Kouvaritakis
and Rice (1998) employ linear transformation
(x`"Ax#Bu is replaced by x`"(A#BK)x#Bv
where v :"u!Kx is the re-parameterized control) to
improve conditioning of the optimal control problem
P

N
(x) solved on-line.

3.9. Suboptimal model predictive control

When the system is linear, the cost quadratic and the
constraint sets are polyhedral, the optimal open-loop
control problem reduces to a quadratic programme (X

f
in P

N
(x) may be replaced, if necessary, by a polytopic

inner approximation) for which e$cient programs exist.
These yield a global solution to the optimal open-loop
control problem, so that the model predictive controllers,
described above, may be implemented. However, when
the system is nonlinear, the optimal open-loop control
problem is non-convex, and conventional nonlinear pro-
gramming algorithms can only be relied on to give local,
rather than global, solutions. The question then arises
whether the desirable properties of model predictive con-
trol are lost if global solutions to the optimal open-loop
control problem are not computable. The question is
important because it is unlikely that global optimization
algorithms, despite the progress being made in this "eld,
will be employed for large problems. Indeed, it generi-
cally requires an in"nite amount of computation merely
to verify that a point x is globally optimal. The situation
is vastly better for "nding feasible solutions; the measure
of the set of feasible solutions is generically positive, in
contrast to zero for globally optimal solutions (if unique),
and veri"cation of the feasibility of a point x is simple. So,
model predictive controllers that require feasibility
rather than optimality have a much better prospect of
being implemented when the system is nonlinear.

The problem is addressed in Michalska and Mayne
(1993) and Mayne (1995) where it was shown, for con-
tinuous-time, variable horizon, dual-mode model predic-
tive control, that it is possible to ensure stability by using
a feasible solution to the open-loop control problem that
is merely better, in a well de"ned sense, than the preced-

ing solution; optimality is not required, merely feasibility.
Chisci et al. (1996) extend this strategy to "xed horizon
model predictive control for discrete-time systems.
A more general analysis (Scokaert et al., 1999) establishes
that, under mild conditions, feasibility rather than opti-
mality su$ces for stability, so that many existing model
predictive controllers, for which stability has been estab-
lished under the assumption that global solutions to the
optimal open-loop control problem are employed, may,
possibly with minor modi"cations, retain their stabilizing
properties when global minimization is not possible. The
purpose of this result is not to advocate suboptimality
(optimality is preferred when possible), but to permit
satisfactory control when achieving optimality is imprac-
tical. Many strategies are possible. For example, the
controller may attempt to "nd an optimal solution to the
optimal control problem and cease when a permitted
time limit is reached. Or it may solve a simpler version of
the optimal control problem, for example one in which
only the "rst few control actions in the sequence are
optimized (Zheng, 1997).

3.10. Conclusion

The surprising, and happy, discovery of this survey is
the rapidly emerging consensus reached by many re-
searchers on the essential ingredients (terminal cost, F( ) ),
terminal constraint set X

f
and local stabilizing controller

i
f
( ) )) that ensure closed-loop stability when model pre-

dictive control is employed. The "rst two ingredients
appear explicitly in the optimal control problem (al-
though automatic satisfaction of the terminal constraint
may be attained by prior choice of a su$ciently large
horizon). The local controller i

f
( ) ) is merely implicit, but

is required to prove stability (and to provide a &hot' start
for the optimal control problemP

N
(x)). We have distilled

from this consensus a set of four conditions (or axioms)
A1}A4 that are su$cient for closed-loop stability
(modulo further modest assumptions). This provides a
useful uni"cation of existing work, in that most variants
of model predictive control di!er only in their choice of
these ingredients.

It appears desirable, for many reasons, to have a ter-
minal cost F( ) ) which is as close to the value function
<0

=
( ) ) as possible. This choice, if exactly achieved, gives

the known bene"ts of in"nite horizon optimal control.
One bene"t, not discussed above, that seems important
in the context of model predictive control, is that this
choice ensures the closed-loop trajectory of the plant is
exactly that predicted by the solution of the optimal
control problem P

N
(x) so that the e!ect of the cost

parameters on (nominal) closed-loop performance is
transparent. This correspondence of predicted and actual
trajectories is not achieved in all versions of model pre-
dictive control; zero terminal state model predictive con-
trol can, if the horizon N is less than the plant's settling
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time, result in a plant trajectory that di!ers considerably
from its prediction. Since <0

=
( ) ) is not known (except if

the system is linear and unconstrained and the cost
quadratic), a good approximation in a neighbourhood
X

f
of the target state is required. When the system is

linear and constrained, the set X
f

can be chosen so that
<0

=
( ) ) is exactly known in it; hence, if N is chosen

appropriately, the closed-loop trajectory of the plant is
exactly that predicted by the solution of the optimal
control problem P

N
(x). When the system in nonlinear,

constrained or unconstrained, F( ) ) and X
f

may be
chosen so that F(x) is a good approximation to <0

=
(x) in

X
f
. A useful result of satisfaction of A1}A4 is that the

"nite horizon optimal control problem P
N
(x) is equiva-

lent to a modi"ed in"nite horizon optimal problem (in
which l( ) ) is replaced by lM ( ) )'l( ) )). So the known
bene"ts of in"nite horizon optimal control are achieved
(if A1}A4 are satis"ed) even though the horizon is "nite.

4. Robustness

4.1. Introduction

The introduction of uncertainty in the system
description raises the question of robustness, i.e. the main-
tenance of certain properties such as stability and perfor-
mance in the presence of uncertainty. Most studies on
robustness consider unconstrained systems; if a Lyapunov
function for the nominal closed-loop system maintains its
descent property if the disturbance (uncertainty) is su$-
ciently small, then stability is maintained in the presence of
uncertainty. However, when constraints on states and
controls are present, it is necessary to ensure, in addition,
that disturbances do not cause transgression of the con-
straints; this adds an extra level of complexity.

The earliest analyses of robustness of model predictive
control employed impulse response models. Richalet et
al. (1978) investigate robustness in the face of gain mis-
match. In later papers, control is determined by solving
a min}max optimal control problem where the &adver-
sary' represents uncertainty in the impulse response. The
complexity of this problem increases exponentially with
horizon length although Allwright (1993) shows how this
complexity may be substantially reduced. For further
discussion of robustness of model predictive control
using impulse response models, see Zheng and Morari
(1993), Genceli and Nikolaou (1993), and De Nicolao,
Magni and Scattolini (1996b). It is relatively simple to
ensure robust stability for linear or nonlinear systems
that have "nite memory ("nite impulse response models,
"nite Volterra models, etc.) since a stability constraint
(e.g. x(N)"0) is simply implementable (by choosing
N and k

1
appropriately and imposing the constraint, in

the optimal control problem, that the control is zero for
all k5k

1
).

There are several approaches to the study of robust-
ness. The "rst is concerned with the robustness of closed-
loop systems, designed using the nominal system (i.e.
neglecting uncertainty). The second attempts to achieve
robustness in the context of conventional model predic-
tive control by consideration of all possible realizations
on the uncertainty (min}max open-loop model predictive
control). A defect of model predictive control of uncertain
systems, not yet widely appreciated, is the open-loop
nature of the optimal control problem; the third ap-
proach addresses this by introducing feedback in the
min}max optimal control problem solved on-line. We
brie#y address each approach below.

4.2. Modelling uncertainty

We shall suppose the uncertain system is described by

x`"f (x, u,w),

z"h(x).

The state x and control u satisfy the same constraints as
before, and the adversary w satis"es w(k)3=(x(k),u(k))
for all k where, for each (x, u), =(x, u) is closed (perhaps
compact) and contains the origin in its interior. Because
f ( ) ) now depends on w, we de"ne

H
/ (x, u,w) :"/( f (x, u, w))!/(x),

where /(x) is any function. Let w( ) ) or w :"Mw(0),
w(1),2,w(N!1)N denote a disturbance sequence and
xu,w( ) ;x) the state trajectory (sequence) resulting from an
initial state x at time 0, and control and disturbance
sequences u and w, respectively. Let F(x, u) :"f (x, u,
=(x, u)); then F( ) ) maps points in X]U to subsets of
Rn and x`3F(x, u) is an alternative de"nition of the
system. In some situations the uncertainty (e.g. state
estimation error) is time varying in which case uncertain-
ty may be better modelled by w(k)3=

k
where=

k
varies

appropriately with time k.

4.3. Inherent robustness

By inherent robustness we mean robustness of the
closed-loop system using model predictive control ob-
tained ignoring uncertainty. This has been investigated in
De Nicolao et al. (1996a) and Magni and Sepulchre
(1997). We discuss the latter because the continuous-time
case is simpler. The unconstrained system (ignoring un-
certainty) is

x5 "f (x)#g(x)u

and the cost (again ignoring uncertainty)

<(x, u( ) ))"P
T

0

l(x(s), u(s)) ds#F(x(¹)),
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where x(s)"xu(s; x, 0), l(x, u)"(1/2)DuD2
R
#q(x) and q( ) )

is positive de"nite. There are no constraints on x and
u but there is a terminal constraint x(¹)3X

f
. The

optimal control i
T
(x) minimizes l(x, u)#S+<0

T
(x),

f (x)#g(x)uT so that

i
T
(x)"!R~1g(x)T+<0

T
(x).

If B1}B4 are satis"ed

<Q 0
T
(x)#q6 (x)#(1/2)Di

T
(x)D2

R
"0,

where q6 (x)"q(x)#(L/Lt)<0(x,0)5q(x); thus i
T
( ) ) is

optimal for a (modi"ed) in"nite horizon optimal
control problem. Standard calculations now show that
<Q 0

T
(x)#q6 (x)40 if the system is replaced by

x5 "f (x)#g(x)/(u),

where /( ) ) is a nonlinearity in the sector (1/2,R). Hence,
the closed-loop system is asymptotically stable with a re-
gion of attraction Mx D<0

T
(x)4cNLX

N
; the region of

attraction may be considerably smaller than X
N
.

4.4. Conditions on F( ) ), X
f

and i
f
( ) )

Subsequent versions of robust model predictive con-
trol that consider all realizations of the disturbance se-
quence w in the optimal control problem require
strengthened assumptions. The ingredients F( ) ), X

f
and

i
f
( ) ) are therefore assumed, in the sequel, to satisfy

robust versions of A1}A4, viz.,
A1: X

f
LX,X

f
closed, 03X

f
.

A2: i
f
(x)3U, ∀ x3X

f
.

A3a: f (x,i
f
(x),w)3X

f
, ∀ x3X

f
, ∀w3=(x,i

f
(x)).

A4a: [
H
F#l](x,i

f
(x),w)40, ∀x3X

f
, ∀w3= (x,i

f
(x)).

There exist such a triple if F( ) ) is a robust control
Lyapunov function in a neighbourhood of the origin.
These assumptions ensure

[
H
<0

N
#l](x,i

N
(x), w)40

(or, equivalently, the monotonicity property) for all x in
an appropriate set and all w3=(x,i

N
(x)) and, hence,

asymptotic or exponential stability.

4.5. Open-loop min}max model predictive control

Deterministic model predictive control, discussed in
Section 3, has the property that X

N
is positively invariant

for the closed-loop system x`"f (x,i
N
(x)); if x3X

N
,

then x`3X
N~1

LX
N
. This property is lost when uncer-

tainty is present, as illustrated in Section 4.3. To recover
this property, it is necessary to consider all possible
realizations of x`3F(x, u) in the optimal control prob-
lem and ensure each realization satis"es the state, control
and terminal constraints (Michalska & Mayne, 1993;

Mayne, 1995; Chen, Scherer & AllgoK wer, 1997; Magni,
Nijmeijer & van der Schaft, 1999b; Magni, De Nicolao,
Scattolini & AllgoK wer, 1999a). The cost of an individual
realization is de"ned by

J(x,u, w) :"
N~1
+
i/0

l(x(s), u(s))#F(x(N)),

where, now, x(s)"xu, w(s;x, 0) and the cost is

<
N
(x, u) :"maxMJ(x, u,w) Dw3W

N
(x, u)N,

where W
N
(x, u) is the set of admissible disturbance se-

quences. Other choices are sometimes made; for example
<(x, u) may be the cost J(x, u,0) of the nominal system
where 0 is the zero sequence. An interesting variant, in
the context of model predictive control of stable linear
uncertain systems, is proposed in Badgwell (1997); here
the optimal control problem incorporates a robust stabil-
ity constraint, namely that the control reduces the cost
associated with each possible realization (assumed "nite
in number) of the linear system. This is stronger than
merely a reduction in the maximum cost. In some cases
(H

=
model predictive control), l( ) ) is a function of

(x, u,w). Let U0-
N
(x) now denote the set of admissible

control sequences u satisfying the state, control and
terminal constraints for every admissible disturbance
sequence w when the initial state is x. Clearly
U0-

N
(x)LU

N
(x). For all i50, let X0-

i
denote the set of

states x such that U0-
N
O0; X0-

i
LX

i
is the set of states

that can be robustly steered to X
f

in i steps or less by an
admissible control sequence u. The open-loop optimal
control problem is

P0-
N
(x): <0

N
(x)"minM<

N
(x,u) D u3U0-

N
(x)N.

The solution u0(x) of P0-
N
(x) yields the implicit min}max

model predictive control law:

i0-
N
(x) :"u0(0;x)

as before. Corresponding to u0(x) is a &bundle' of optimal
state trajectories Mx0(x,w)N, one for each admissible w,
where

x0(x,w)"Mx0(0; x,w),x0(1;x,w),2,x0(N;x,w)N.

By the de"nition of P0-
N
(x), x0(N;x,w)3X

f
for each ad-

missible w. The ingredients (F( ) ),X
f
,i

f
( ) )) are assumed

to satisfy A1, A2, A3a and A4a. At this point a di$culty
arises: suppose x3X0-

N
and an optimal (hence admissible)

control sequence Mu0(0;x), u0(1;x),2, u0(N!1; x)N for
P0-

N
(x) is known; this sequence steers every realization of

the state (corresponding to di!erent realizations of w) to
X

f
in N steps or less so that x0(N;x,w)3X

f
for every

w3W(x,u0(x)). Hence, the abbreviated control sequence
Mu0(1;x),2, u0(N!1; x)N steers every x`3F(x,i

N
(x)) to

X
f

in N!1 steps or less so that x`3X0-
N~1

. The di$-
culty is obtaining a feasible control sequence

u8 (x)"Mu0(1;x),2, u0(N!1; x), vN
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for P
N
(x`) where x` is any state in F(x,i

N
(x)); the

control action v3U is required to satisfy f (x0

(N;x,w), vu
N
)3X

f
for every w3W(x, u0(x)). Condition

A3a does not ensure the existence of a v with this prop-
erty. Without a feasible sequence, an upper bound for
<0

N
(x`) cannot be obtained. One way of avoiding this

impasse is to replace the "xed horizon strategy by a vari-
able horizon strategy (Michalska & Mayne, 1993) in
which the decision variable is (u,N). Suppose
(u0(x),N0(x)) solves the resultant variable horizon opti-
mal control problem P(x), where

u0(x) :"Mu0(0;x), u0(1;x),2, u0(N0(x)!1; x)N.

Then (u6 (x),N0(x)!1), where

u6 (x) :"Mu0(1;x),2, u0(N0(x)!1; x)N

is a feasible solution for the optimal control problem
P(x`) at any x`3F(x, i

N
(x)). With <0( ) ) denoting the

resultant value function and i0-( ) ) the resultant model
predictive control law,

[
H
<0 #l](x,i0-(x),w)40

(or, equivalently, the monotonicity property) holds for all
x3X0-

N
CX

f
, all w3=(x,i0-(x)). Inside X

f
, a local robust-

ly stabilizing control law i
f
( ) ) is used; conditions A1, A2,

A3a and A4a ensure the existence of a suitable X
f

and
i
f
( ) ). With further modest assumptions, robust asymp-

totic (exponential) stability results with a domain of at-
traction X0-

N
.

4.6. Feedback model predictive control

4.6.1. Introduction
Although open-loop min}max model predictive con-

trol appears attractive, it may be very conservative due to
the open-loop nature of P0-

N
(x); for given (x,u), the trajec-

tories satisfying x`3F(x) may diverge (consider the sys-
tem x`"x#w, w3[!1, 1]) causing X0-

N
to be small or

even empty for reasonable N. This is unrealistic, because
feedback prevents the trajectories from diverging excess-
ively; the scenario generated in solving P0-

N
(x) does not

model accurately the uncertain control problem because
it ignores feedback by searching over open-loop control
sequences u in minimizing <(x, u). For this reason feed-
back model predictive control was proposed in Mayne
(1995,1997), Kothare, Balakrishnan and Morari (1996),
Lee and Yu (1997), Scokaert and Mayne (1998), De
Nicolao, Magni and Scattolini (1999b), Magni, Nijmeijer
and van der Schaft (1999b), and Magni, De Nicolao,
Scattolini and AllgoK wer (1999a). In feedback model pre-
dictive control, the decision variable u, which is a se-
quence of control actions, is replaced by a policy n which
is a sequence of control laws. More precisely

n :"Mu(0), i
1
( ) ),2,i

N~1
( ) )N

where, for each i, i
i
( ) ) :XPU is a control law whereas

u(0) is a control action (since there is only one initial
state). The cost is

<
N
(x, n) :"maxMJ(x,n,w) Dw3W

N
(x, n)N,

where

J(x,n,w) :"
N~1
+
i/0

l(x(s), u(s))#F(x(N))

with x(s)"xn,u(s; x), the state at time s resulting from an
initial state x at time 0, a control policy n and a distur-
bance sequence w; W

N
(x,n) is the set of admissible dis-

turbance sequences given that control policy n is
employed. Let %

N
(x) denote the set of admissible control

policies n satisfying the state, control and terminal con-
straints for every admissible disturbance when the initial
state is x. For all i50, let X&"

i
denote the set of states

x such that %
i
O0; X&"

i
LX

i
is the set of states that can

be robustly steered to X
f

in i steps or less by an admiss-
ible policy n. The feedback optimal control problem is

P&"
N
(x): <0

N
(x)"minM<

N
(x,n) D n3%

N
(x)N.

The solution, if it exists, is

n0(x)"Mu0(0; x),i0
1
( ) ;x),2, i0

N~1
( ) ;x)N

of P&"
N
(x) yields an implicit feedback model predictive

control law

i&"
N
(x) :"u0(0; x).

Suppose assumptions A1, A2, A3a and A4a hold. Then

n8 (x,x`) :"Mi0
1
(x`;x), i0

2
( ) ; x),2,i0

N~1
( ) ; x),i

f
( ) )N

is a feasible policy for P&"
N
(x`) for all x`3F(x,i&"

N
(x)),

all x3X&"
N
, X&"

N
is positively invariant for the system

x`3F(x,i&"
N
(x)) and

[
H
<0

N
#l](x,i&"

N
(x),w)40

for all x3X&"
N
, all w3=(x,i&"

N
(x)). With further modest

assumptions, robust asymptotic (exponential) stability
results with a domain of attraction X&"

N
. The results are

similar to those for open-loop min}max model predictive
control; the gain is that X&"

N
contains X0-

N
(and is possibly

far larger).
The feedback version of model predictive control ap-

pears attractive but prohibitively complex. It is en-
couraging, therefore, to note two examples that have
appeared in the recent literature.

4.6.2. Linear feedback MPC
An interesting proposal (Kothare et al., 1996) for ro-

bust model predictive control of linear constrained sys-
tems that recognizes the need for a feedback version of
the optimal control problem solved on-line has recently
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appeared. An abbreviated description follows. The sys-
tem is

x`"Ax#Bu, y"Cx,

where h :"(A,B) is only known to lie in a convex set #,
the convex hull of M(A

i
, B

i
) D i3IN. Let F(x,P) :"xTPx,

A
K

:"A#BK and l(x, u) :"xTQx#uTRu where Q and
R are positive de"nite. The control and state constraints
are U :"Mu D DDuDD4c

u
N and x3X :"Mx D DDCxDD4c

x
N. At

each state x, the (feedback) optimal control problemP(x)
of minimizing c with respect to (c,P,K) subject to the
constraints

(i) P'0, F(x,P)4c,
(ii) F(A

K
x@,P)!F(x@,P)#l(x@,Kx@)40, ∀x@3X(c,P),

∀(A,B)3#,
(iii) DKx@D4c

u
and DCx@D4c

x
, ∀x@3X(c,P),

where X(c,P) :"Mx D F(x,P)4cN is solved yielding
(c0(x), P0(x),K0(x)). This problem is shown in Kothare et
al. (1996) to be equivalent to a linear matrix inequality.
The control u"K0(x)x is applied to the plant, and
the procedure repeated. The controller generates a se-
quence Mx(k),P(k), c(k)N satisfying x(k)3X(c(k),P(k)) and
c(k#1)4c(k)!x(k)TQx(k) for all k and all admissible
parameter sequences. It readily follows that x(k)P0 as
kPR. This is an interesting contribution, albeit conser-
vative because the sets=(k), being ellipsoids, are conser-
vative inner approximations to X

=
, the set of states

steerable to the origin and because the feedback policy
n is a sequence of identical feedback laws.

4.6.3. Min}max feedback MPC
The second example (Scokaert & Mayne, 1998) ad-

dresses model predictive control of the uncertain system

x`"Ax#Bu#w,

where the state, control and disturbance satisfy the con-
straints x3X, u3U and w3=, respectively. These sets
are convex, compact and contain the origin in their
interiors;= is a "xed polytope (="coMv

i
D i3IN so the

class of permissible disturbances is W"=N. Because
the disturbance is merely bounded, the most that can be
achieved is to steer the state to a &robust control invariant
set X

f
'; a local controller i

f
( ) ) then maintains the state

in X
f

despite the disturbance. The optimal control prob-
lem P&"

N
(x) is of the terminal constraint variety with

F(x),0 and l( ) ) convex and zero in X
f
. However, in

solving P&"
N
(x), W is replaced by V"<N where

<"Mv
i
D i3IN is the set of vertices of= and so has a "nite

number of elements M"IN~1. In this modi"ed problem,
instead of determining, at each i3M0,1,2,N!1N, a con-
trol law ii( ) ), an optimal control action u0

j
(i;x), is deter-

mined for each of the Ii states x0
j
(i;x) resulting from the

di!erent realizations of w so that the decision variable is

n"Mu(0),Mu
j
(1) D j3IN,2,Mu

j
(N!1) D j3IN~1NN.

Optimization yields n0(x), the optimal solution of P&"
N
(x)

(with W replaced by V"<N); the model predictive
control law is i&"

N
(x)"u0(0; x). An admissible n8 0(x,x`)

for P&"
N
(x`) is then obtained by interpolation and incor-

poration of i
f
( ) ), yielding

[
H
<0

N
#l](x,i&"

N
(x),w)40

for all x3X&"
N
, all w3=(x,i&"

N
(x)) and, hence, closed-loop

stability. A defect of this approach is computational
complexity; the number of vertices of W is exponential
in N.

4.7. H
=

model predictive control

The earliest consideration of H
=

model predictive
control appears in Tadmor (1992) and Lall and Glover
(1994), both papers being concerned with linear, time-
varying, unconstrained, continuous-time systems. The
time-varying nature of the problem, as in Kwon et al.
(1983) justi"es the use of model predictive control. Tad-
mor implicitly uses the terminal equality constraint
x(t#¹)"0 (equivalently a terminal cost which is in"-
nite except at the origin). Interestingly, Lall and Glover
(1994) employ a (time-varying) quadratic terminal cost
F(x, t)"(1/2)xTP(t)x, a local time-varying controller
u"i

f
(x, t) and X

f
(t)"Rn such that a (continuous-time)

time-varying extension of A4a, viz.

[FQ #l](x,i
f
(x),w, t)40

is satis"ed for all t'0, all x3Rn and all w. These papers
are also interesting in their use of feedback policy for the
control in the optimal control problem solved on-line.
Nonlinear H

=
control, like its linear counterpart, ensures

robustness by its choice of a cost function. However,
determining the controller requires, in general, solution
of a nonlinear Hamilton}Jacobi}Isaacs (HJI) equation. It
is, therefore, not surprising that attempts have been made
(Chen et al., 1997; De Nicolao, Magni & Scattolini,
1999b; Magni, Nijmeijer & van der Schaft, 1999b; Magni,
De Nicolao, Scattolini & AllgoK wer, 1999a) to avoid this
complexity by using an appropriate version of model
predictive control. The results are interesting, but imple-
mentation remains a di$culty. Following Chen et al.
(1997), all utilize a terminal cost F( ) ) derived from
H

=
control of the linearized system and a terminal con-

straint set X
f
. Chen et al. (1997) consider continuous-

time, nonlinear systems and use an open-loop model
predictive strategy, analogous to that described in Sec-
tion 5.4. The remaining papers use the feedback model
predictive control strategy described in Section 5.5, both
in a continuous-time context (Magni, Nijmeijer & van
der Schaft, 1999b) and a discrete-time context (De Nic-
olao, Magni & Scattolini, 1999b; Magni, De Nicolao,
Scattolini & AllgoK wer, 1999a). The underlying idea is

D.Q. Mayne et al. / Automatica 36 (2000) 789}814 807



similar to that already discussed, the major change being
the choice of the stage cost l( ) ). Consider the discrete-
time system

x`"f (x, u,w), z"(Hx, u),

with the cost of a particular realization, when policy n is
employed, being

J(x,n,w) :"
N~1
+
i/0

l(z(i),w(i))#F(x(N))

where x(i)"xn,w(i;x, 0) and

l(z,w) :"(1
2
)(DzD2!c2DwD2).

The cost is de"ned by

<
N
(x, n) :"max

w

MJ(x,n,w) D w3W
N
(x,n)N,

where W
N
(x, n) is the set of admissible disturbances de-

"ned below. The optimal control problem is

P
N
(x): <0

N
(x)"minM<

N
(x, n) D n3%

N
(x)N,

where %
N
(x) is the set of admissible policies. To simplify

stability arguments we make the (very restrictive) as-
sumption that =(x, u) is de"ned by

=(x, u) :"Mw D DwD4dD(Hx, u)D)N

and that Q"HTH'0. Hence

l(z,w)"(1/2)(DzD2!c2DwD2)5(1/2)((1!d2c2)DzD2)

"(p/2)DzD25(k/2)DxD2

for all x, u and all w3=(x, u) where p'0 and k'0 if
d(1/c. This assumption may be relaxed (e.g. we may
merely require that * is a dynamic system with l

2
gain

not exceeding d and satisfaction of an observability con-
dition) if more sophisticated stability arguments (van der
Schaft, 1996) are employed.

To determine X
f

and F( ) ), we consider a linear
H

=
problem for which the system is

x`"Ax#Bu#Gw,

where A"f
x
(0, 0), B"f

u
(0, 0) and G"f

w
(0, 0) and the

cost of a realization is

=
+
i/0

l@(x(i), u(i),w(i)),

where the stage cost

l@(x, u, w)"l((Hx,w),w)#(1/2)oDxD2, o'1

is the same as that for the original nonlinear system
except that Q is replaced by Q#oI to provide a margin
for approximation errors. If the data are appropriate (in
particular if c is large enough), the value function of the
linear H

=
problem is F(x)"(1/2)xTPx, P'0 and the

optimal control strategy is u"i
f
(x). The value function

F( ) ) satis"es

F(Ax#Bi
f
(x)#Gw)!F(x#l((x,i

f
(x)),w)

#(1/2)oDxD240

for all x, all admissible w. If f ( ) ) is su$ciently smooth,
there exists a level set of F( ) ), viz.

X
f

:"Mx D F(x)4cN

such that

[
H
F #l](x,i

f
(x), w)40

for all x3X
f
, all w3=(x,u). Under our assumptions, the

triple (F( ) ),X
f
,i

f
( ) )) satis"es A1, A2, A3a and A4a so

that

[
H
<0

N
#l](x,i&"

N
(x),w)40

for all x3X&"
N
, all x`3F(x,i&"

N
(x)) and all w3=(x,u).

Since l(x, u, w)5(k/2)DxD2 for all admissible w3=(x,u),
asymptotic (exponential) stability of the closed-loop sys-
tem follows (under appropriate further assumptions).
A further consequence of the last inequality is

DDzDD2
2
4c2DDwDD2

2
#<0

N
(x)

so that the closed-loop system (u"i&"
f
(x)) has a ¸

2
gain

(from w to z) not exceeding c.

4.8. Conclusion

Research on robustness has clari"ed our understand-
ing of the problem and the limitations inherent in con-
ventional (open-loop) model predictive control. Perhaps
these limitations should have been appreciated earlier;
after all, it is not possible to de"ne a linear quadratic
optimal control problem that yields the H

=
controller

* a min}max optimal control problem must be solved
where the minimization is over control strategies and not
control sequences. The studies reported above de"ne
more clearly the problems that must be solved but, unlike
research on stability, do not yet provide implementable
solutions since the decision variable (n,w) is in"nite-
dimensional. Feedback model predictive controllers
must still be regarded as conceptual rather than practical.
A tantalizing possibility for evading this impasse is pre-
sented by Gallestey and James (1999) in the context of
unconstrained continuous-time systems of the form
x5 "f (x)#g(x)u#h(x)w. If a global control Lyapunov
function F( ) ) is available for the terminal cost there is no
need for a terminal constraint; the resultant uncon-
strained optimal control problem can then be formulated
as a two-point boundary value problem solvable by
shooting methods.
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5. Other issues

5.1. Introduction

There remains a wealth of topics we have not discussed
in this review. Our purpose here is to mention, rather
than review, some important issues currently receiving
attention from researchers.

5.2. Tracking

In the discussion above, the origin represents, with
a suitable change of coordinates, any desired equilibrium
state x

r
such that x

r
3X and u

r
3U where u

r
is the

equilibrium control (x
r
"f (x

r
, u

r
)). When the system be-

ing controlled is linear, and constant input and output
disturbances are present, Muske and Rawlings (1993)
utilize estimates of the disturbances to compute a (x

r
, u

r
)

such that the equilibrium output y
r
is as close as possible

to the desired set-point r (y
r
"r if this is possible without

transgressing constraints). For further reading on track-
ing constant reference signals see Lee, Morari and GarcmHa
(1994), Lee and Cooley (1997), Rawlings et al. (1994) and
Meadows and Badgwell (1998).

For tracking arbitrary reference signals (rather than
those generated by a "nite-dimensional exogenous sys-
tem w`"s(w)), variants of reference governors have
been proposed. Reference governors, initially developed
for control of constrained linear systems (see, for
example, Gilbert, Kolmanovsky & Tan, 1994) assume
that a primal controller has been designed to stabilize the
plant and provide nice tracking properties in the absence
of constraints. The reference governor then modulates the
reference signal r(t) to obtain a signal g(t) with the follow-
ing properties: g(t) never causes the plant to saturate and
g(t)Pr(t) as tPR. Model predictive reference gov-
ernors, proposed in Bemporad, Casavola and Mosca
(1997), Bemporad (1998b) and Bemporad and Mosca
(1998) utilize predictions over the interval [t, t#¹] (t is
current time) to determine g(t).

5.3. Output feedback

One approach to output feedback is to use a state
representation in which the state consists of current and
past inputs and outputs (Mosca et al., 1990; Mosca
& Zhang, 1992; Mosca, 1994; Chisci & Mosca, 1994;
Bemporad et al., 1995). An alternative approach is to use
an observer and certainly equivalence, i.e. replace the
initial x in the optimal control problem by its estimate x( .
The estimation error is an uncertainty, so robustness
issues, not fully resolved, are involved though some per-
turbation results (Scokaert, Rawlings & Meadows, 1997)
may be employed for the unconstrained case. Any state
estimator may be employed (usually the Kalman "lter
when the system is linear). Magni, De Nicolao and Scat-

tolini (1998) establish stability of the composite system
(observer and model predictive controller) when a weak
detector (Vidyasagar, 1980) is employed. Michalska and
Mayne (1995) establish stability of the composite system
when a moving horizon observer is employed; no uncer-
tainty exists in the model so the state can be perfectly
estimated using a record of input/output data over the
interval [t!¹

0
, t] where t is the current time.

5.4. Soft constraints

While control constraints are usually hard (must be
satis"ed), some state constraints may be transgressed.
Several researchers have studied how this extra freedom
may be utilized if the state is forced into an infeasible
region. In soft constraint model predictive control, viola-
tions of the state constraints are allowed, but an addi-
tional term, which penalizes constraint violations, is
introduced in the objective (Ricker, Subrahmanian
& Sim, 1988; Zheng & Morari, 1993,1995; De Oliveira
& Biegler, 1994; Genceli & Nikolaou, 1993; Vuthandam,
Genceli & Nikolaou, 1995). Rawlings and Muske (1993)
discuss an alternative approach that identi"es the
smallest time, which depends on the current state, be-
yond which the state constraint can be satis"ed on an
in"nite horizon and enforces the state constraint only
after that time. Scokaert and Rawlings (1999) analyse
these approaches and propose that constraint violation
at times of infeasibility be regarded as a multi-objective
problem.

5.5. Adaptation

Although adaptation was one of the earliest motiva-
tions for model predictive control, a stabilizing adaptive
model predictive controller for constrained systems has
not yet been developed. A prior requirement for progress
in this area, as in output feedback model predictive
control with state estimation, is a good methodology for
achieving robustness.

5.6. Optimization algorithms

Mayne (1995) provides a general discussion of the use
of optimization for model predictive control. When the
system is linear, the cost quadratic, and the sets U and
X polyhedral, the optimal control problem P

N
(x) is

a quadratic programme, provided X
f

is replaced, if ne-
cessary, by a polytopic inner approximation. If the sys-
tem is nonlinear, P

N
(x) is generally non-convex, so that

only local, rather than global, solutions will generally be
available. Then, suboptimal model predictive control
may be employed although in some cases it may be
possible to employ global optimization. Many optimal
control algorithm have been developed; see, for example,
(Polak, 1997). An overview of algorithms suitable for
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solving P
N
(x) is given in Biegler (1998). Wright (1997)

and Rao, Wright and Rawlings (1998) describe
algorithms developed for use in linear model predictive
control.

6. Achievements and future objectives

We give below our assessment of research on model
predictive control within the focus of this review, and
endeavour to formulate a few desirable objectives for the
near future.

6.1. Stability

Research on stability of model predictive controlled
systems has now reached a relatively mature stage. The
important factors for stability have been isolated and
employed to develop a range of model predictive control-
lers that are stabilizing and di!er only in their choice of
the three ingredients F( ) ), X

f
and i

f
( ) ) that are common

to most forms of model predictive control. These condi-
tions are merely su$cient and several researchers (Nevis-
ticH & Primbs, 1997) are seeking relaxations. Nor do they
provide a complete answer. While they provide a means
for dealing with a few target states, problems arise when
the set of target states is a continuum. Determination of
the ingredients for the nonlinear case involves global
optimization, which may be carried out o!-line when
there are but a few target states, but is undesirable for the
on-line computation required if the target state changes.
It would be desirable to have a terminal constraint set
X

f
which is a neighbourhood of the continuum of target

sets (zero error manifold) and a local controller i
f
( ) ) that

maintains states in X
f
. This problem has not yet been

resolved.

6.2. Robustness

Progress here has not been as dramatic. While the
problem has been studied and is now well understood,
the outcome of the research is conceptual controllers that
work in principle but are too complex to employ. Further
research is required to develop implementable robust
model predictive controllers.

6.3. Other topics

Some progress has been achieved in all of the topics
mentioned in Section 5. As indicated above, further re-
search on the tracking problem when the set of constant
target states is a continuum, or when it is necessary to
track a moving target generated by an exogenous system
w`"s(w), is desirable. Progress in output feedback
model predictive control depends on developments in

robustness and state estimation. The moving horizon
state estimation approach is becoming better understood
(Robertson & Lee, 1996; Robertson, Lee & Rawlings,
1996). The challenge in moving horizon estimation is to
utilize prior information without prejudicing the stability
of the observer (Rao & Rawlings, 1998).

There are no recent signi"cant results on adaptive
model predictive control; progress here also depends
on progress on the robustness issue. There is con-
siderable activity in the area of optimal control algo-
rithms, some of it speci"cally directed to use in model
predictive control. Although the possibility of achieving
stability through sub-optimal model predictive control
has been established, there has been little exploitation of
this extra freedom to develop model predictive control-
lers for nonlinear systems where optimality is hard to
obtain.

6.4. Hybrid systems

Model predictive control has traditionally been de-
veloped for control of "nite-dimensional discrete-time
systems or continuous-time systems with piecewise con-
stant control; the optimal control problem for the latter
can be formulated, at least conceptually, as a discrete-
time problem. However, all processes (and model predic-
tive control has been almost exclusively employed for
process control) contain discrete components such as
valves, switches, speed selectors and overrides, in addi-
tion to continuous components that are described
by di!erence or di!erential equations. Consideration of
hybrid systems that possess both types of compo-
nents model opens up a rich area of research relevant to
a range of important problems such as control and super-
visory schemes in the process industries (Slupphaug
& Foss, 1997; Slupphaug, 1998; Bemporad & Morari,
1998,1999; Morari, Bemporad & Mignone, 1999). Many
system theoretic concepts, as well as control strategies
like model predictive control, require re-examination in
this setting.

Appendix A

Exponential stability results if the value function<0
N
( ) )

satis"es the following conditions: there exist positive con-
stants a, b and c such that

aDxD24<0
N
(x)4bDxD2, ∀x3X

N
, (A.1)

H
<0

N
(x,i

N
(x))4!cDxD2, ∀x3X

N
. (A.2)

Our assumption that l(x, u)5cD(x, u)D25cDxD2 guaran-
tees the left-hand inequality in (A.1) (with a replacing c)
and (A.2). But, as observed by Jadbabaie et al. (1999),
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<0
N
(x)4F(x) for all x3X

f
. Often F(x)"(1

2
)DxD2

P
where

P'0, so that <0
N
(x)4bDxD2 for all x3X

f
, some b'0.

Since any x3X
N
CX

f
is steered to X

f
in "nite time,

exponential stability results. Jadbabai et al. prove their
observation as follows. Let x be an arbitrary point in
X

f
and let Mxf(k;x)N and Muf(k;x)N be the state and

control sequences resulting from initial state x and con-
troller i

f
( ) ). Then, by A4

F(x)5
N~1
+
k/0

l(xf(k; x), uf(k;x))#F(xf(N;x)).

But, by optimality (since xf(N;x)3X
f

by A3)

<0
N
(x)4

N~1
+
k/0

l(xf(k; x), uf(k;x))#F(xf(N;x)).

Hence <0
N
(x)4F(x) for all x3X

f
, for all N'0.
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